学术特困生
码龄4年
关注
提问 私信
  • 博客:4,021
    4,021
    总访问量
  • 9
    原创
  • 163,706
    排名
  • 15
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2021-03-08
博客简介:

qq_55879284的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    2
    当前总分
    134
    当月
    0
个人成就
  • 获得27次点赞
  • 内容获得8次评论
  • 获得26次收藏
创作历程
  • 1篇
    2024年
  • 8篇
    2023年
成就勋章
TA的专栏
  • 论文翻译
兴趣领域 设置
  • Python
    pythonnumpypipconda
  • 人工智能
    计算机视觉目标检测机器学习人工智能深度学习神经网络cnn自动驾驶
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Efficient Teacher: Semi-Supervised Object Detection for YOLOv5

Abstract 半监督目标检测(SSOD)已经成功地提高了R-CNN系列和无锚定检测器的性能。然而,单级锚固检测器缺乏生成高质量或灵活的伪标签的结构,导致SSOD存在严重的不一致性问题。在本文中,我们提出了可扩展和有效的基于锚的SSOD训练的高效教师框架,包括密集检测器、伪标签分配器和Epoch适配器。密集检测器是一个基线模型,它利用受YOLOv5启发的密集采样技术扩展了视网膜网。高效教师框架引入了一种新的伪标签分配机制,即伪标签分配器,它更精细地使用了从密集检测器中获得的伪标签。Epoch适配器是一
原创
发布博客 2024.06.25 ·
1164 阅读 ·
24 点赞 ·
2 评论 ·
21 收藏

jyfvgbv jyfk

nn.ReLU(),nn.ReLU(),
原创
发布博客 2023.11.09 ·
98 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

11111

将遮挡块覆盖到目标框位置上,并计算box被遮挡部分的占比。# 当目标大部分被完全覆盖时,才完成有效的遮挡扩增。# 在当前图像中找到一块背景区域作为遮挡块。# # 遮挡块需要带一定背景区域。
原创
发布博客 2023.10.16 ·
76 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

USOT: 学习跟踪从未标记的视频中提取的对象

大量的实验表明,所提出的无监督跟踪器设置了新的最先进的无监督跟踪结果,甚至与最近的有监督的深度跟踪器的性能相当。尽管它很简单,但我们表明,这种策略为无监督跟踪器提供了一个很好的初始化,从而有利于未来在更长的时间跨度内的训练。表明,与我们提出的盒子序列生成相比,从具有随机裁剪的单帧对中训练一个简单的跟踪器会导致显著的精度下降。大量的实验表明,我们提出的跟踪器在最先进的无监督跟踪器上表现良好,并且与最近的监督跟踪器相当(见图。该方案帮助我们的跟踪器利用长期的变化,同时仍然确保内存框架中的伪边界框的可靠性。
原创
发布博客 2023.07.05 ·
586 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

UDT:Unsupervised Deep Tracking

所提出的无监督孪生网络相关滤波器网络的概述如图2(b).所示在下面,我们首先重新访问基于相关滤波器的跟踪框架,然后说明我们的无监督深度跟踪方法的细节。通过设计一个无监督的孪生网络相关滤波器网络,我们验证了我们的基于前向后向的无监督训练管道的可行性和有效性。大量的实验表明,所提出的无监督跟踪器,没有花里胡哨,作为一个坚实的基线,并取得了与经典的完全监督跟踪器相当的结果。与现有的使用大量注释数据进行监督学习的方法不同,我们的CNN模型是以无监督的方式在大规模的无标记视频上进行训练的。
原创
发布博客 2023.07.05 ·
316 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

ULAST:准确孪生网络跟踪的无监督学习

在本文中,我们的目标是通过学习在分类分支和回归分支上的时间对应关系来训练一个更好的跟踪器,然而,我们发现有三个关键的挑战。相比之下,我们的工作是一个无监督的学习框架,用于精确的基于孪生网络的跟踪,这不需要巨大的注释成本。第三,由于无监督跟踪框架仍然依赖于初始帧中的伪标签,而盒回归分支训练需要具有清晰边缘的对象,因此初始帧中的伪标签是至关重要的。首先,尽管通过沿着一个时间周期跟踪视频可以获得无限的自我监督,但现有的方法对如何探索视频时间维度上的自我监督信号来训练具有盒估计分支的跟踪器还没有进行很好的探索。
原创
发布博客 2023.07.05 ·
946 阅读 ·
1 点赞 ·
1 评论 ·
3 收藏

self-SDCT:自监督的深度相关性跟踪

每个样本对的不同相似性样本都对训练过程有相同的影响,这影响了训练网络的表征能力。为了解决上述两个问题,在本工作中,我们开发了一个鲁棒且高效的基于深度相关的跟踪器,其中包含两个关键组成部分:一个基于自监督学习的预训练深度特征提取网络和一个高效的深度相关跟踪框架。对这种缺陷的一种解释是,它采用了在无监督学习方法下使用单周期一致性损失训练的特征提取网络,这意味着它不能在一些复杂的场景中建模合适的目标外观。然而,由于标记训练数据的数量有限,在基于深度学习的跟踪框架中训练一个高效的特征提取网络仍然是一个困难的问题。
原创
发布博客 2023.07.04 ·
220 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

S2SiamFC:自监督全卷积孪生网(论文翻译)

换句话说,我们提出的方法的训练数据可以是任何基于图像的数据集,因为我们提出的方法不需要任何注释,也不依赖于时间关系;此外,我们的模型是以离线方式训练的。我们的假设是,模板的内容可能只是一些无意义的对象,对于这些情况,响应映射的输出是平坦的,这个训练样本对于训练是不可靠的。(b)表示一个无意义的对,预测的响应图往往是平坦的(许多较大的正值),因为模板区域是搜索区域中的一个常见模式。为了充分利用丰富的信息,甚至是从一个单一的图像,我们利用对抗性学习的想法,在训练期间增强我们的训练数据。中的多重掩蔽的性能。
原创
发布博客 2023.07.04 ·
253 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

数据集的评价方法及研究现状

发布资源 2023.02.03 ·
docx

AI系统量化评价-模型评估方法、网络评价指标

发布资源 2023.02.03 ·
docx

一招解决:no module named ‘pysot‘

一招解决:no module named 'pysot'
原创
发布博客 2023.02.03 ·
357 阅读 ·
2 点赞 ·
1 评论 ·
0 收藏