
Efficient Teacher: Semi-Supervised Object Detection for YOLOv5
Abstract 半监督目标检测(SSOD)已经成功地提高了R-CNN系列和无锚定检测器的性能。然而,单级锚固检测器缺乏生成高质量或灵活的伪标签的结构,导致SSOD存在严重的不一致性问题。在本文中,我们提出了可扩展和有效的基于锚的SSOD训练的高效教师框架,包括密集检测器、伪标签分配器和Epoch适配器。密集检测器是一个基线模型,它利用受YOLOv5启发的密集采样技术扩展了视网膜网。高效教师框架引入了一种新的伪标签分配机制,即伪标签分配器,它更精细地使用了从密集检测器中获得的伪标签。Epoch适配器是一












