展开
题目背景
本题疑似错题,不保证存在靠谱的多项式复杂度的做法。测试数据非常的水,各种做法都可以通过,不代表算法正确。因此本题题目和数据仅供参考。
题目描述
已知有两个字串 A,BA,B 及一组字串变换的规则(至多 66 个规则):
A_1\to B_1A1→B1
A_2\to B_2A2→B2
规则的含义为:在 AA 中的子串 A_1A1 可以变换为 B_1B1,A_2A2 可以变换为 B_2\cdotsB2⋯。
例如:A=\text{abcd}A=abcd,B=\text{xyz}B=xyz,
变换规则为:
\text{abc}\rightarrow\text{xu}abc→xu,\text{ud}\rightarrow\text{y}ud→y,\text{y}\rightarrow\text{yz}y→yz
则此时,AA 可以经过一系列的变换变为 BB,其变换的过程为:
\text{abcd}\rightarrow\text{xud}\rightarrow\text{xy}\rightarrow\text{xyz}abcd→xud→xy→xyz。
共进行了 33 次变换,使得 AA 变换为 BB。
输入格式
输入格式如下:
AA BB
A_1A1 B_1B1
A_2A2 B_2B2 |-> 变换规则
... .../
所有字符串长度的上限为 2020。
输出格式
若在 1010 步(包含 1010 步)以内能将 AA 变换为 BB,则输出最少的变换步数;否则输出 NO ANSWER!
输入输出样例
输入 #1复制
abcd xyz
abc xu
ud y
y yz
输出 #1复制
3
#include<bits/stdc++.h>
using namespace std;
string s1,s2;
map<string,int>mp;
int main()
{
cin>>s1>>s2;
string abc[100],su[100];
int n=1;
while(cin>>abc[n]>>su[n])
{
n++;
}
n--;
queue<string> Q;
queue<int> sum;
Q.push(s1);
sum.push(0);
while(!Q.empty()){ //直到队列为空就结束
if(Q.front()==s2)
{
cout<<sum.front();
return 0; //如果满足条件就结束
}
if(sum.front()==10)
{
Q.pop();
sum.pop(); //如果超过10了那么就弹出去
}
string c=Q.front();
if(mp.count(c)==1)
{
Q.pop();
sum.pop();
continue;//如果在这个区间就跳过
}
mp[c]=1;
for(int i=1;i<=n;i++)
{
int p=0;
while(c.find(abc[i],p)!=-1)
{
p=c.find(abc[i],p);//获取最开始是在第几位
Q.push(c.substr(0,p)+su[i]+c.substr(p+abc[i].length())); //压入队列
sum.push(sum.front()+1); //当前点加1
p++;
}
}
Q.pop();
sum.pop();
}
cout<<"NO ANSWER!";
return 0;
}