形式化题意
给定一个整数 N N N 和一个序列 c c c ( ∣ c ∣ = N |c|=N ∣c∣=N ),试找出一个最小的 x x x ,使得 f ( x ) = ( ∑ i = 1 N c i > = x ) × x f(x)=(\sum\limits_{i=1}^{N}c_i>=x)\times x f(x)=(i=1∑Nci>=x)×x的值最大
大概思路
由于 c i c_i ci 的最大值只有 1 0 6 10^6 106 而 N N N 最大只有 1 0 5 10^5 105 ,因此我们考虑一种 O ( l o g 2 N × M a x c i ) O(log_2 N\times Max_{c_i}) O(log2N×Maxci) 的做法,即暴力枚举 [ 0 , M a x c i ] [0,Max_{c_i}] [0,Maxci] 中的每一个可能的 x x x ,逐个比较得出使得 f ( x ) f(x) f(x) 最大的 x x x。
算法设计
我们可以考虑枚举 Z Z Z 中的所有的 x x x ,追个比较 f ( x ) f(x) f(x) 的值,并得出满足要求最小的 x x x ,但是这样做是不可实现的,因为我们不可能枚举整数集的每一个可能的值。
但是我们可以发现,对于所有的 x < 0 x<0 x<0 ,始终有 f ( x ) < 0 f(x)<0 f(x)<0(读者可以试着自己证明一下),而对于 f ( 0 ) f(0) f(0),有 f ( 0 ) = 0 f(0)=0 f(0)=0(也请读者想一想这应该如何证明,步骤十分简单)。所以说,我们可以排除所有的负数。
而对于所有的 x > M a x c i x>Max_{c_i} x>Maxci ,都有 f ( x ) = 0 f(x)=0 f(x)=0 ,那么对于所有的 f ( x ) = 0 f(x)=0 f(x)=0,最小的 x x x 应该是 0 0 0 。所以我们排除了 x > M a x c i x>Max_{c_i} x>Maxci 的所有情况。
于是,我们只需要枚举 [ 0 , M a x c i ] [0,Max_{c_i}] [0,Maxci] 中的每一个数即可。
至于计算 f ( x ) f(x) f(x) ,我们只需要先将数组排好序,然后找到第一个大于等于 x x x 的数 c i c_i ci ,可以证明 ∑ i = 1 N c i > = x \sum\limits_{i=1}^{N}c_i>=x i=1∑Nci>=x 等于 N − i + 1 N-i+1 N−i+1 (请读者自己想一想为什么),于是 f ( x ) f(x) f(x) 就等于 ( N − i + 1 ) ∗ x (N-i+1)*x (N−i+1)∗x 。而查找第一个大于等于 x x x 的数 c i c_i ci 则可以用二分法实现。总复杂度 O ( N × l o g 2 N + M a x c i × l o g 2 N ) O(N \times log_2 N +Max_{c_i} \times log_2 N ) O(N×log2N+Maxci×log2N)
代码
完整***C++***代码如下
#include<iostream>
#include<algorithm>
using namespace std;
using UL=unsigned long;
using ULL=unsigned long long;//用于存储大型非负整数
UL c[100005];
int main()
{
register UL N,maxn(0);//maxn用于计算数组中的最大值
cin>>N;
for(register UL i(1);i<=N;++i) {
cin >> c[i];
if(c[i]>maxn)
maxn=c[i];
}
sort(c+1,c+1+N);//按照数值排序
register UL price(0);//price记录当前最优情况下收取的学费
register ULL ans(0);//ans记录当前的最大答案
for(register UL i(maxn);i;--i)
{
register const UL first(lower_bound(c+1,c+1+N,i)-c);//first:常量UL形式存储第一个大于等于i的元素的下标
register const ULL income((N-first+1)*(ULL)(i));//常量ULL形式存储当前方案的收入
if(income>ans)
ans=income,
price=i;
else if(income==ans)
price=i;
}
cout<<ans<<" "<<price;//按照题目要求输出
return 0;
}