莫比乌斯函数与欧拉函数

定理 函数 i d id id μ \mu μ的狄利克雷卷积等于 ϕ \phi ϕ

证明
∑ d ∣ n i d ( d ) μ ( n d ) = ∑ d ∣ n d ⋅ μ ( n d ) \sum\limits_{d\mid n}id(d)\mu(\frac{n}{d})=\sum\limits_{d\mid n}d\cdot\mu(\frac{n}{d}) dnid(d)μ(dn)=dndμ(dn)
假设 n n n的标准分解式为 ∏ i = 1 m p i r i \prod\limits_{i=1}^mp_i^{r_i} i=1mpiri,那么有:
∑ d ∣ n i d ( d ) μ ( n d ) = n − n p 1 − n p 2 − . . . − n p m + n p 1 p 2 + . . . + n p m − 1 p m − . . . + ( − 1 ) m = n [ ( − 1 ) m p 1 p 2 . . . p m + ( − 1 ) m − 1 p 1 p 2 . . . p m − 1 + . . . + 1 p 1 p 2 . . . p m ] = n ( 1 − p 1 ) ( 1 − p 2 ) . . . ( 1 − p m ) p 1 p 2 . . . p m \sum\limits_{d\mid n}id(d)\mu(\frac{n}{d})=n-\frac{n}{p_1}-\frac{n}{p_2}-...-\frac{n}{p_m}+\frac{n}{p_1p_2}+...+\frac{n}{p_{m-1}p_m}-...+(-1)^m=n[\frac{(-1)^mp_1p_2...p_m+(-1)^{m-1}p_1p_2...p_{m-1}+...+1}{p_1p_2...p_m}]=n\frac{(1-p_1)(1-p_2)...(1-p_m)}{p_1p_2...p_m} dnid(d)μ(dn)=np1np2n...pmn+p1p2n+...+pm1pmn...+(1)m=n[p1p2...pm(1)mp1p2...pm+(1)m1p1p2...pm1+...+1]=np1p2...pm(1p1)(1p2)...(1pm)
最右侧实际上就是欧拉函数:
n ( 1 − p 1 ) ( 1 − p 2 ) . . . ( 1 − p m ) p 1 p 2 . . . p m = n 1 − p 1 p 1 1 − p 2 p 2 . . . 1 − p m p m = n ( 1 − 1 p 1 ) . . . ( 1 − 1 p m ) = ϕ ( n ) n\frac{(1-p_1)(1-p_2)...(1-p_m)}{p_1p_2...p_m}=n\frac{1-p_1}{p_1}\frac{1-p_2}{p_2}...\frac{1-p_m}{p_m}=n(1-\frac{1}{p_1})...(1-\frac{1}{p_m})=\phi(n) np1p2...pm(1p1)(1p2)...(1pm)=np11p1p21p2...pm1pm=n(1p11)...(1pm1)=ϕ(n)
于是得证。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值