I. INTRODUCTION
1.定义
OCC 是一种特殊的多类分类,训练数据仅来自单个正类。目标是学习表示和/或分类器,以便在推理过程中识别正类查询。
2.应用
异常图像检测、异常事件检测、生物识别(活体检测、反诈骗)
3.与其他领域的比较
One-class novelty detection单类新颖性检测: 目标相似,但 OCC 是监督学习,而新颖性检测是无监督学习。 Outlier detection (unsupervised anomaly detection)离群点检测(无监督异常检测): OCC 是监督学习,而异常检测是无监督学习。 Open-set recognition 开放集识别:开放集识别是一种多类分类的扩展方法。具体来说,在给定一个查询图像时,开放集识别考虑了这个图像可能不属于训练过程中观察到的任何类别的可能性。 OCC 是开放集识别的极端情况,即正类只有一个。
II. OCC 方法分类
1.数据类型:
仅正类数据 正类和未标记数据 正类和标记 OOD 数据
2.特征类型:
手工特征 (PCA、核 PCA) 统计数据驱动特征 (稀疏编码) 深度学习特征 (自编码器、几何变换自监督、OOD 数据度量学习、特征学习与 OOD 数据)
3.分类算法:
基于表示的方法 (KNFST) 统计方法 (OCSVM、SVDD、OCMPM、DS-OCMPM、GODS) 深度学习方法 (判别性方法、生成模型、知识蒸馏)
III.OCC的特征
在多类分类中,学习有助于分类的特征是一个重要研究课题。OCC 也受益于能够将正类数据与其他数据分开的特征,但在 OCC 中,由于训练时没有负类数据,选择合适的特征更加困难。
期望的特征属性:
-
紧凑性(Compactness):理想的特征应能对同一类别的不同图像提供相似的表示,因而这些特征在特征空间中应该紧密聚集。
-
描述性(Descriptiveness):特征应能为不同类别的图像生成明显不同的表示,即每个类别应该有独特的特征表示。
A.Statistical Features
1.Sparse Coding(稀疏编码)
稀疏表示的基本概念:给定一个查询图像,稀疏表示方法通过一个字典来提取特征。字典可以