网页不同渲染方式的应对与反爬机制的处理——python爬虫

写在前面

本文是对前两篇文章所介绍的内容的补充,在了解前两篇文章——《爬虫入门与requests库的使用》和《BeautifulSoup 库的使用》,对python 爬虫理论上的介绍后,再看本文,你将会有更加深刻的理解(大佬随意🎉)。

爬虫习惯

在了解requests库BeautifulSoup 库后,我们需要知道一些关于爬虫开发习惯和原则,以此来应对网页不同的渲染方式

web 网页渲染方式

首先,要知道一般情况,web网页会有两种渲染方法:

  • 服务器渲染:在服务器那边,直接将数据html页面代码整合在一起,返回给浏览器-----在浏览器上的页面源代码中能够找到对应的数据
  • 客户端渲染: 第一次请求服务器,只要一个html的骨架,第二次请求才会拿到对应的数据,然后由客户端(浏览器)将html数据整合在一起,展示出来-----在浏览器上的页面源代码中找不到对应的数据
服务器渲染

其次,BeautifulSoup 库是用来处理爬取到的页面源代码(html)的,若要爬取到网页源代码,就要知道其对应url:

在这里插入图片描述

如上图所示,红框处不仅有url还有对应的参数信息,以上方式适用于服务器渲染,即在页面源代码中找得到数据

客户端渲染

另外一种情况就是客户端渲染,其依靠于浏览器抓包工具,如下图:

在这里插入图片描述

若想要爬取到上述红框的数据,需要知道其对应的url,如下:

在这里插入图片描述

上图中的url后面也携带了参数,但是我们一般不看,因为不方便,我们一般采用如下方式查看参数:

在这里插入图片描述

最重要的原则是:以上两个方式,能直接爬取到数据,绝不爬取html页面!!!

反爬机制

一般的网站都会有反爬机制,当我们通过爬虫进行爬取网站数据时,可能会触发该网站的反爬机制,通常情况下,返回状态码<403>,就表明触发了反爬机制,在反爬机制下,爬虫是无法再继续获取数据的,必须要用户亲自登录该网站才行,为此,我们必须尽可能地避免触发网站的反爬机制,而避免的方法有以下几种。

使用session对象

尽可能地使用Session(会话)对象来封装爬虫,而不是直接使用requests库来封装爬虫。

Session(会话) 的主要作用:

  1. 自动管理Cookie

当我们访问需要登录的网站时,首次登录后服务器会返回 Cookies,后续请求需携带这些 Cookies 以维持登录状态。
而有了Session后,Session就可以自动保存和发送 Cookies,无需手动处理。


session = requests.Session()
#创建一个持久化的会话对象

# 向指定网址发送登录请求(自动保存 Cookies)
session.post("https://example.com/login", data={"user": "admin", "pass": "123"})
# post——提交用户名(user)和密码(pass)等参数
# 用Session对象发送post登录请求,Session对象可以自动接收并存储服务器返回的Cookies



# 后续请求通过Session对象发出,请求将自动携带 Cookies
response = session.get("https://example.com/dashboard")

  1. 持久化公共参数

当我们有多个请求都需要相同的 Headers(请求头)、超时时间认证信息代理时,可以使用Session对象,一次性设置参数,所有通过 该Session对象发起的请求自动继承这些参数。

session = requests.Session()   #创建一个session对象

session.headers.update({"User-Agent": "My Crawler/1.0"})
# 向session对象中添加一个请求头

session.proxies = {"http": "http://10.10.1.10:3128"}
# 向session对象中添加一个代理

# 所有请求自动携带 请求头 和代理
session.get("https://example.com/page1")
session.get("https://example.com/page2")
  1. 复用 TCP 连接(性能优化)

当我们高频次请求同一服务器时,重复建立和断开 TCP 连接会浪费资源,这个时候,我们可以通过Session对象来对TCP连接进行复用,通过复用连接,可以减少延迟并提升效率。

# 未使用 Session:每次请求新建连接
for _ in range(10):
    requests.get("https://example.com")  # 10 次独立连接

# 使用 Session:复用同一连接(推荐使用)
with requests.Session() as session:
    for _ in range(10):
        session.get("https://example.com")  # 更高效

4.保持请求上下文

某些网站会检查请求的连贯性(如反爬机制),我们可以通过session对象来模拟浏览器行为,保持一致的上下文(如Referer、Cookies)。

注意事项:

  • 会话对象需合理关闭(推荐用 with 语句管理资源)。
  • 如果请求不同网站且无需共享参数,直接使用 requests.get() 更轻量

使用cookie

提前登录你要爬取的网站,通过浏览器抓包,在你的登录后的任意请求的请求头中找到"cookie"的字段或者在响应头中找到"set-cookie"字段,将cookie复制到你的代码中,作为爬虫伪装的请求头的一部分。

在这里插入图片描述

  • 如上图,cookie的形式: cookie名 = cookie值,上图红框内有很多cookie,有些是目标网站的,有些是第三方平台的。这里面不是所有cookie都必须需要,其核心的cookiedbcl2 + ck登录相关)、bid反爬基础)。
  • 此外,cookie的获取,还可以通过代码来实现:response.cookies,该代码作用是返回要爬取的网页的所有的cookie

在这里插入图片描述

如上图所示,只有一个cookiecookie名为"bid",其tk6VyicFk4E

一般请求头中有了cookie,服务器就会默认此请求是一个用户发出的,而不是爬虫。

让请求头信息更丰富

对于爬虫伪装的请求头,信息要越丰富越好,一般必须有这两个字段"referer"
"User-Agent",其余字段视情况判断是否添加。

关于"User-Agent"字段,可以使用 fake_useragent 库生成随机浏览器"User-Agent",这样能够增大绕开机制的可能。

from fake_useragent import UserAgent
import requests

ua = UserAgent()
headers = {'User-Agent': ua.random}  #随机生成的UA
response = requests.get(url, headers=headers)

注意:使用 fake_useragent 库生成随机浏览器头,可能会生成移动端,windows端,linux端等不同的浏览器头,有些网站会根据不同的浏览器头返回不同的页面,这个时候,爬虫可能会失效(因为同一个url返回了不同页面,导致爬取失败)

使用代理和随机延迟

短时间高频请求触发会触发网站对该 IP地址的封禁,因此,我们要控制访问频率。

import requests
import time
import random

proxies = {
    "http": "http://10.10.1.10:3128",  # 假设此为有效代理
    "https": "http://10.10.1.10:1080",
}

# 随机延迟(1~3秒)
time.sleep(random.uniform(1, 3))

response = requests.get(url, headers=headers, proxies=proxies)

注意:

  • 以上,是一些常用的基本的绕开反爬机制的方法,但并不是全部,具体采用哪个方法,要根据你要爬取的网站的具体情况来判断。
  • 各个方法之间,也不是独立的,可以相互配合使用,提高绕开反爬机制的可能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

freejackman

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值