1.∫sinmx×cosnxdx\int \sin ^{m} x\times \cos ^{n} x\mathrm{d}x∫sinmx×cosnxdx
- m,n均为偶数或其中一个为0时:采用降幂公式{cos2x=1+cos2x2sin2x=1−cos2x2\left\{\begin{array}{l}\cos ^{2} x = \frac{1+\cos 2x}{2} \\\sin ^{2} x = \frac{1-\cos 2x}{2} \end{array}\right.{cos2x=21+cos2xsin2x=21−cos2x
- m,n至少有一个为奇数,则从奇数次方里挑一个三角函数往后凑微分。

2. 华里士公式

3288

被折叠的 条评论
为什么被折叠?



