常用的等价无穷小

常用的等价无穷小

x → 0 x \rightarrow 0 x0

(1) 一阶的:

x ∼ sin ⁡ x ∼ arcsin ⁡ x ∼ tan ⁡ x ∼ arctan ⁡ x ∼ e x − 1 ∼ ln ⁡ ( 1 + x ) ( 1 + x ) α − 1 ∼ α x ln ⁡ ( x + 1 + x 2 ) ∼ x \begin{array}{c}x \sim \sin x \sim \arcsin x \sim \tan x \sim \\\arctan x \sim \mathrm{e}^{x}-1 \sim \ln (1+x) \\\quad(1+x)^{\alpha}-1 \sim \alpha x \\\quad \ln \left(x+\sqrt{1+x^{2}}\right) \sim x\end{array} xsinxarcsinxtanxarctanxex1ln(1+x)(1+x)α1αxln(x+1+x2 )x

(2) 二阶的:

1 − cos ⁡ x ∼ 1 2 x 2 1 − cos ⁡ α x ∼ α 2 x 2 x − ln ⁡ ( 1 + x ) ∼ 1 2 x 2 \begin{array}{l}\\\begin{array}{c}1-\cos x \sim \frac{1}{2} x^{2} \\1-\cos ^{\alpha} x \sim \frac{\alpha}{2} x^{2} \\x-\ln (1+x) \sim \frac{1}{2} x^{2}\end{array}\end{array} 1cosx21x21cosαx2αx2xln(1+x)21x2

(2) 三阶的:

x − sin ⁡ x ∼ 1 6 x 3 tan ⁡ x − x ∼ 1 3 x 3 arcsin ⁡ x − x ∼ 1 6 x 3 x − arctan ⁡ x ∼ 1 3 x 3 x-\sin x \sim \frac{1}{6} x^{3}\\\tan x-x \sim \frac{1}{3} x^{3}\\\arcsin x-x \sim \frac{1}{6} x^{3}\\x-\arctan x\sim \frac{1}{3} x^{3} xsinx61x3tanxx31x3arcsinxx61x3xarctanx31x3
在这里插入图片描述

【注1】在实际使用过程中一般都需要将 x 进行广义化,即将 x 替换成趋于 0 的函数 f(x) ,例如 sin ⁡ ( sin ⁡ x ) − sin ⁡ x ∼ − 1 6 sin ⁡ 3 x ∼ − 1 6 x 3 \sin (\sin x)-\sin x \sim-\frac{1}{6} \sin ^{3} x \quad \sim-\frac{1}{6} x^{3} sin(sinx)sinx61sin3x61x3.
【注2】在使用时等价无穷小代换时,要灵活变形,不要拘泥于原始形式,例如当 x → 0 x \rightarrow 0 x0 时, ln ⁡ cos ⁡ x = ln ⁡ ( 1 + cos ⁡ x − 1 ) ∼ cos ⁡ x − 1 ∼ − 1 2 x 2 ; x x − 1 = e x ln ⁡ x − 1 ∼ x ln ⁡ x \ln \cos x=\ln (1+\cos x-1) \sim \cos x-1 \sim-\frac{1}{2} x^{2} ; x^{x}-1=\mathrm{e}^{x \ln x}-1 \sim x \ln x lncosx=ln(1+cosx1)cosx121x2;xx1=exlnx1xlnx 等等.
在这里插入图片描述

泰勒公式

1.常用的泰勒展开式 ( x → 0 ) (\boldsymbol{x} \rightarrow \boldsymbol{0}) (x0)
sin ⁡ x = x − 1 3 ! x 3 + o ( x 3 ) arcsin ⁡ x = x + 1 6 x 3 + o ( x 3 ) tan ⁡ x = x + 1 3 x 3 + o ( x 3 ) arctan ⁡ x = x − 1 3 x 3 + o ( x 3 ) cos ⁡ x = 1 − 1 2 ! x 2 + 1 4 ! x 4 + o ( x 4 ) e x = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + o ( x 3 ) ln ⁡ ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 + o ( x 3 ) ( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + α ( α − 1 ) ( α − 2 ) 3 ! x 3 + o ( x 3 ) \begin{array}{l}\\\begin{array}{l}\sin x=x-\frac{1}{3!} x^{3}+o\left(x^{3}\right) \\\arcsin x=x+\frac{1}{6} x^{3}+o\left(x^{3}\right) \\\tan x=x+\frac{1}{3} x^{3}+o\left(x^{3}\right) \\\arctan x=x-\frac{1}{3} x^{3}+o\left(x^{3}\right) \\\cos x=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}+o\left(x^{4}\right) \\\mathrm{e}^{x}=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+o\left(x^{3}\right) \\\ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+o\left(x^{3}\right) \\(1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!} x^{2}+ \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3}+o\left(x^{3}\right)\end{array}\end{array} sinx=x3!1x3+o(x3)arcsinx=x+61x3+o(x3)tanx=x+31x3+o(x3)arctanx=x31x3+o(x3)cosx=12!1x2+4!1x4+o(x4)ex=1+x+2!1x2+3!1x3+o(x3)ln(1+x)=x21x2+31x3+o(x3)(1+x)α=1+αx+2!α(α1)x2+3!α(α1)(α2)x3+o(x3)
【注】 使用泰勒公式时也可以将 x广义化,例如
l n ( 1 + sin ⁡ x ) = sin ⁡ x − 1 2 ( sin ⁡ x ) 2 + o ( sin ⁡ 2 x ) . \begin{array}{l}\\ln (1+\sin x)=\sin x-\frac{1}{2}(\sin x)^{2}+o\left(\sin ^{2} x\right) .\end{array} ln(1+sinx)=sinx21(sinx)2+o(sin2x).

不难发现,等价无穷小其实就是取了泰勒公式的第一项或者前两项来近似替代原来的无穷小,是忽略了高阶无穷小之后的泰勒公式,是一种“近似代换”,而泰勒公式不同,泰勒公式是“恒等变形”,

因此也把泰勒公式称为“完全型代换”,在前面我们说过等价无穷小可以用于乘除中的因式替换,在加减中使用有限制,而泰勒公式则完全消除了这种限制,因为泰勒公式是恒等变形,当然适用于任何运算.

明白了这一点,那么在加减中是否可以使用等价无穷小的问题其实也就是高阶无穷小是否可以被忽略的问题了.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值