常用的等价无穷小
当 x → 0 x \rightarrow 0 x→0 时
(1) 一阶的:
x ∼ sin x ∼ arcsin x ∼ tan x ∼ arctan x ∼ e x − 1 ∼ ln ( 1 + x ) ( 1 + x ) α − 1 ∼ α x ln ( x + 1 + x 2 ) ∼ x \begin{array}{c}x \sim \sin x \sim \arcsin x \sim \tan x \sim \\\arctan x \sim \mathrm{e}^{x}-1 \sim \ln (1+x) \\\quad(1+x)^{\alpha}-1 \sim \alpha x \\\quad \ln \left(x+\sqrt{1+x^{2}}\right) \sim x\end{array} x∼sinx∼arcsinx∼tanx∼arctanx∼ex−1∼ln(1+x)(1+x)α−1∼αxln(x+1+x2)∼x
(2) 二阶的:
1 − cos x ∼ 1 2 x 2 1 − cos α x ∼ α 2 x 2 x − ln ( 1 + x ) ∼ 1 2 x 2 \begin{array}{l}\\\begin{array}{c}1-\cos x \sim \frac{1}{2} x^{2} \\1-\cos ^{\alpha} x \sim \frac{\alpha}{2} x^{2} \\x-\ln (1+x) \sim \frac{1}{2} x^{2}\end{array}\end{array} 1−cosx∼21x21−cosαx∼2αx2x−ln(1+x)∼21x2
(2) 三阶的:
x
−
sin
x
∼
1
6
x
3
tan
x
−
x
∼
1
3
x
3
arcsin
x
−
x
∼
1
6
x
3
x
−
arctan
x
∼
1
3
x
3
x-\sin x \sim \frac{1}{6} x^{3}\\\tan x-x \sim \frac{1}{3} x^{3}\\\arcsin x-x \sim \frac{1}{6} x^{3}\\x-\arctan x\sim \frac{1}{3} x^{3}
x−sinx∼61x3tanx−x∼31x3arcsinx−x∼61x3x−arctanx∼31x3
【注1】在实际使用过程中一般都需要将 x 进行广义化,即将 x 替换成趋于 0 的函数 f(x) ,例如
sin
(
sin
x
)
−
sin
x
∼
−
1
6
sin
3
x
∼
−
1
6
x
3
\sin (\sin x)-\sin x \sim-\frac{1}{6} \sin ^{3} x \quad \sim-\frac{1}{6} x^{3}
sin(sinx)−sinx∼−61sin3x∼−61x3.
【注2】在使用时等价无穷小代换时,要灵活变形,不要拘泥于原始形式,例如当
x
→
0
x \rightarrow 0
x→0 时,
ln
cos
x
=
ln
(
1
+
cos
x
−
1
)
∼
cos
x
−
1
∼
−
1
2
x
2
;
x
x
−
1
=
e
x
ln
x
−
1
∼
x
ln
x
\ln \cos x=\ln (1+\cos x-1) \sim \cos x-1 \sim-\frac{1}{2} x^{2} ; x^{x}-1=\mathrm{e}^{x \ln x}-1 \sim x \ln x
lncosx=ln(1+cosx−1)∼cosx−1∼−21x2;xx−1=exlnx−1∼xlnx 等等.
泰勒公式
1.常用的泰勒展开式
(
x
→
0
)
(\boldsymbol{x} \rightarrow \boldsymbol{0})
(x→0)
sin
x
=
x
−
1
3
!
x
3
+
o
(
x
3
)
arcsin
x
=
x
+
1
6
x
3
+
o
(
x
3
)
tan
x
=
x
+
1
3
x
3
+
o
(
x
3
)
arctan
x
=
x
−
1
3
x
3
+
o
(
x
3
)
cos
x
=
1
−
1
2
!
x
2
+
1
4
!
x
4
+
o
(
x
4
)
e
x
=
1
+
x
+
1
2
!
x
2
+
1
3
!
x
3
+
o
(
x
3
)
ln
(
1
+
x
)
=
x
−
1
2
x
2
+
1
3
x
3
+
o
(
x
3
)
(
1
+
x
)
α
=
1
+
α
x
+
α
(
α
−
1
)
2
!
x
2
+
α
(
α
−
1
)
(
α
−
2
)
3
!
x
3
+
o
(
x
3
)
\begin{array}{l}\\\begin{array}{l}\sin x=x-\frac{1}{3!} x^{3}+o\left(x^{3}\right) \\\arcsin x=x+\frac{1}{6} x^{3}+o\left(x^{3}\right) \\\tan x=x+\frac{1}{3} x^{3}+o\left(x^{3}\right) \\\arctan x=x-\frac{1}{3} x^{3}+o\left(x^{3}\right) \\\cos x=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}+o\left(x^{4}\right) \\\mathrm{e}^{x}=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+o\left(x^{3}\right) \\\ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+o\left(x^{3}\right) \\(1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!} x^{2}+ \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3}+o\left(x^{3}\right)\end{array}\end{array}
sinx=x−3!1x3+o(x3)arcsinx=x+61x3+o(x3)tanx=x+31x3+o(x3)arctanx=x−31x3+o(x3)cosx=1−2!1x2+4!1x4+o(x4)ex=1+x+2!1x2+3!1x3+o(x3)ln(1+x)=x−21x2+31x3+o(x3)(1+x)α=1+αx+2!α(α−1)x2+3!α(α−1)(α−2)x3+o(x3)
【注】 使用泰勒公式时也可以将 x广义化,例如
l
n
(
1
+
sin
x
)
=
sin
x
−
1
2
(
sin
x
)
2
+
o
(
sin
2
x
)
.
\begin{array}{l}\\ln (1+\sin x)=\sin x-\frac{1}{2}(\sin x)^{2}+o\left(\sin ^{2} x\right) .\end{array}
ln(1+sinx)=sinx−21(sinx)2+o(sin2x).
不难发现,等价无穷小其实就是取了泰勒公式的第一项或者前两项来近似替代原来的无穷小,是忽略了高阶无穷小之后的泰勒公式,是一种“近似代换”,而泰勒公式不同,泰勒公式是“恒等变形”,
因此也把泰勒公式称为“完全型代换”,在前面我们说过等价无穷小可以用于乘除中的因式替换,在加减中使用有限制,而泰勒公式则完全消除了这种限制,因为泰勒公式是恒等变形,当然适用于任何运算.
明白了这一点,那么在加减中是否可以使用等价无穷小的问题其实也就是高阶无穷小是否可以被忽略的问题了.