一阶微分方程解的存在定理

该文详细介绍了微分方程解的存在唯一性定理,包括Lipschitz条件和逐步逼近法。通过举例说明如何在给定矩形域上确定解的存在区间,并利用误差分析确定近似解的精度。最终,通过具体计算得到了满足误差要求的近似解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一阶微分方程解的存在定理

1 解的存在唯一性定理

1.1 Lipschitz条件

函数 f ( x , y ) f(x,y) f(x,y)称为在 R R R上关于 y y y满足利普希茨条件,如果存在常数 L > 0 L>0 L>0,使得不等式
∣ f ( x , y 1 ) − f ( x , y 2 ) ∣ ⩽ L ∣ y 1 − y 2 ∣ \left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right| \leqslant L\left|y_{1}-y_{2}\right| f(x,y1)f(x,y2)Ly1y2
对于所有的 ( x , y 1 ) , ( x , y 2 ) ∈ R (x,y_1),(x,y_2) \in R (x,y1),(x,y2)R都成立, L L L称为利普希茨常数.

1.2 解的存在唯一性定理

定理: 如果 f ( x , y ) f(x,y) f(x,y)在矩形域 R R R上连续且关于 y y y满足利普希茨条件,则方程 d y d x = f ( x , y ) \frac{dy}{dx}=f(x,y) dxdy=f(x,y)存在唯一的解 y = φ ( x ) y=\varphi(x) y=φ(x),定义于区间 ∣ x − x 0 ∣ ≤ h \left|x-x_0\right|\le h xx0h上,且满足初值条件
φ ( x 0 ) = y 0 \varphi(x_0)=y_0 φ(x0)=y0
这里 h = min ⁡ ( a , b M ) , M = max ⁡ ( x , y ) ∈ R ∣ f ( x , y ) ∣ . h=\min(a,\frac bM),M=\max_{(x,y)\in R}|f(x,y)|. h=min(a,Mb),M=max(x,y)Rf(x,y).

2 逐步逼近法

考虑初值问题
{ d y d x = f ( x , y ) y ( x 0 ) = y 0 \left\{ \begin{array}{l} \frac{dy}{dx}=f(x,y) \\ y(x_0)=y_0 \end{array} \right . {dxdy=f(x,y)y(x0)=y0
我们可以构造一个逐步逼近函数列
φ 0 ( x ) = y 0 φ 1 ( x ) = y 0 + ∫ x 0 x f ( x , φ 0 ( x ) ) d x φ 2 ( x ) = y 0 + ∫ x 0 x f ( x , φ 1 ( x ) ) d x . . . φ n ( x ) = y 0 + ∫ x 0 x f ( x , φ n − 1 ( x ) ) d x \begin{aligned} \varphi_0(x) &= y_0 \\ \varphi_1(x) &= y_0+\int_{x_0}^x f(x,\varphi_0(x))dx \\ \varphi_2(x) &= y_0+\int_{x_0}^x f(x,\varphi_1(x))dx \\ ... \\ \varphi_n(x) &= y_0+\int_{x_0}^x f(x,\varphi_{n-1}(x))dx \end{aligned} φ0(x)φ1(x)φ2(x)...φn(x)=y0=y0+x0xf(x,φ0(x))dx=y0+x0xf(x,φ1(x))dx=y0+x0xf(x,φn1(x))dx
如果 φ n ( x ) = φ n + 1 ( x ) \varphi_n(x) = \varphi_{n+1}(x) φn(x)=φn+1(x),则 φ n ( x ) \varphi_n(x) φn(x)就是方程的解。 φ n ( x ) \varphi_n(x) φn(x)称为初值问题的 n n n次近似解.

φ n ( x ) \varphi_n(x) φn(x)是定义在 ∣ x − x 0 ∣ ≤ h |x-x_0|\le h xx0h上, h = m i n ( a , b M ) , M = max ⁡ ( x , y ) ∈ R ∣ f ( x , y ) ∣ h=min\left( a,\frac bM \right),M=\max _{(x, y) \in R}|f(x, y)| h=min(a,Mb)M=max(x,y)Rf(x,y)

3 误差分析

n n n次近似解 φ n ( x ) \varphi_n(x) φn(x)和真实解 φ ( x ) \varphi(x) φ(x)之间的误差为
∣ φ n ( x ) − φ ( x ) ∣ ≤ M L n ( n + 1 ) ! h n + 1 \left|\varphi_n(x)-\varphi(x) \right|\le\frac{ML^n}{(n+1)!}h^{n+1} φn(x)φ(x)(n+1)!MLnhn+1

在这里 h = m i n ( a , b M ) , M = max ⁡ ( x , y ) ∈ R ∣ f ( x , y ) ∣ , L h=min\left( a,\frac bM \right),M=\max _{(x, y) \in R}|f(x, y)|,L h=min(a,Mb)M=max(x,y)Rf(x,y),L为利普希茨常数

例题
方程 d y d x = x 2 + y 2 \frac{dy}{dx}=x^2+y^2 dxdy=x2+y2定义在矩形域 R : − 1 ≤ x ≤ 1 , − 1 ≤ y ≤ 1 R:-1\le x\le 1,-1\le y \le 1 R:1x1,1y1上,试利用存在唯一性定理确定经过点 ( 0 , 0 ) (0,0) (0,0)的解的存在区间,并求在此区间上与真正解的误差不超过0.05的近似解的表达式.

这里 M = max ⁡ ( x , y ) ∈ R ∣ f ( x , y ) ∣ = 2 , h = min ⁡ ( a , b M ) = 1 2 M=\max_{(x,y)\in R}|f(x,y)|=2,h=\min{(a,\frac bM)}=\frac 12 M=max(x,y)Rf(x,y)=2,h=min(a,Mb)=21,在 R R R上函数 f ( x , y ) = x 2 + y 2 f(x,y)=x^2+y^2 f(x,y)=x2+y2的利普希茨常数可取为 L = 2 L=2 L=2.因为对于 ∀ x ∈ [ − 1 , 1 ] , y 1 , y 2 ∈ [ − 1 , 1 ] \forall x \in [-1,1],y_1,y_2\in[-1,1] x[1,1],y1,y2[1,1]
∣ f ( x , y 1 ) − f ( x , y 2 ) ∣ = ∣ y 1 2 − y 2 2 ∣ ≤ ( ∣ y 1 ∣ + ∣ y 2 ∣ ) ∣ y 1 − y 2 ∣ ≤ 2 ∣ y 1 − y 2 ∣ |f(x,y_1)-f(x,y_2)|=|y_1^2-y_2^2|\le (|y_1|+|y_2|)|y_1-y_2| \le 2|y_1-y_2| f(x,y1)f(x,y2)=y12y22(y1+y2)y1y22y1y2
因为误差限定在不能超过0.05
∣ φ n ( x ) − φ ( x ) ∣ ≤ M L n ( n + 1 ) ! h n + 1 = M L 1 ( n + 1 ) ! ( L h ) n + 1 = 1 ( n + 1 ) ! ≤ 0.05 |\varphi_n(x)-\varphi(x)|\le \frac{ML^n}{(n+1)!}h^{n+1}=\frac ML \frac {1}{(n+1)!}(Lh)^{n+1}=\frac {1}{(n+1)!}\le0.05 φn(x)φ(x)(n+1)!MLnhn+1=LM(n+1)!1(Lh)n+1=(n+1)!10.05
所以可以取 n = 3 n=3 n=3.
我们构造逐步逼近序列
φ 0 ( x ) = 0 , φ 1 ( x ) = ∫ 0 x [ ξ 2 + φ 0 2 ( ξ ) ] d ξ = x 3 3 , φ 2 ( x ) = ∫ 0 x [ ξ 2 + φ 1 2 ( ξ ) ] d ξ = x 3 3 + x 7 63 , φ 3 ( x ) = ∫ 0 x [ ξ 2 + φ 2 2 ( ξ ) ] d ξ = ∫ 0 x ( ξ 2 + ξ 6 9 + 2 ξ 10 189 + ξ 14 3969 ) d ξ = x 3 3 + x 7 63 + 2 x 11 2079 + x 15 59535 \begin{aligned} \varphi_0(x) &= 0,\\ \varphi_1(x) &= \int_0^x[\xi^2+\varphi^2_0(\xi)]d\xi=\frac{x^3}{3},\\ \varphi_2(x)&=\int_0^x[\xi^2+\varphi^2_1(\xi)]d\xi=\frac{x^3}{3}+\frac{x^7}{63},\\ \varphi_3(x)&=\int_0^x[\xi^2+\varphi_2^2(\xi)]d\xi\\ &=\int_0^x(\xi^2+\frac{\xi^6}{9}+\frac{2\xi^{10}}{189}+\frac{\xi^{14}}{3969})d\xi\\ &=\frac{x^3}{3}+\frac{x^7}{63}+\frac{2x^{11}}{2079}+\frac{x^{15}}{59535} \end{aligned} φ0(x)φ1(x)φ2(x)φ3(x)=0,=0x[ξ2+φ02(ξ)]dξ=3x3,=0x[ξ2+φ12(ξ)]dξ=3x3+63x7,=0x[ξ2+φ22(ξ)]dξ=0x(ξ2+9ξ6+1892ξ10+3969ξ14)dξ=3x3+63x7+20792x11+59535x15
φ 3 ( x ) \varphi_3(x) φ3(x)即为所求.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值