一阶微分方程解的存在定理
1 解的存在唯一性定理
1.1 Lipschitz条件
函数
f
(
x
,
y
)
f(x,y)
f(x,y)称为在
R
R
R上关于
y
y
y满足利普希茨条件,如果存在常数
L
>
0
L>0
L>0,使得不等式
∣
f
(
x
,
y
1
)
−
f
(
x
,
y
2
)
∣
⩽
L
∣
y
1
−
y
2
∣
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right| \leqslant L\left|y_{1}-y_{2}\right|
∣f(x,y1)−f(x,y2)∣⩽L∣y1−y2∣
对于所有的
(
x
,
y
1
)
,
(
x
,
y
2
)
∈
R
(x,y_1),(x,y_2) \in R
(x,y1),(x,y2)∈R都成立,
L
L
L称为利普希茨常数.
1.2 解的存在唯一性定理
定理: 如果
f
(
x
,
y
)
f(x,y)
f(x,y)在矩形域
R
R
R上连续且关于
y
y
y满足利普希茨条件,则方程
d
y
d
x
=
f
(
x
,
y
)
\frac{dy}{dx}=f(x,y)
dxdy=f(x,y)存在唯一的解
y
=
φ
(
x
)
y=\varphi(x)
y=φ(x),定义于区间
∣
x
−
x
0
∣
≤
h
\left|x-x_0\right|\le h
∣x−x0∣≤h上,且满足初值条件
φ
(
x
0
)
=
y
0
\varphi(x_0)=y_0
φ(x0)=y0
这里
h
=
min
(
a
,
b
M
)
,
M
=
max
(
x
,
y
)
∈
R
∣
f
(
x
,
y
)
∣
.
h=\min(a,\frac bM),M=\max_{(x,y)\in R}|f(x,y)|.
h=min(a,Mb),M=max(x,y)∈R∣f(x,y)∣.
2 逐步逼近法
考虑初值问题
{
d
y
d
x
=
f
(
x
,
y
)
y
(
x
0
)
=
y
0
\left\{ \begin{array}{l} \frac{dy}{dx}=f(x,y) \\ y(x_0)=y_0 \end{array} \right .
{dxdy=f(x,y)y(x0)=y0
我们可以构造一个逐步逼近函数列
φ
0
(
x
)
=
y
0
φ
1
(
x
)
=
y
0
+
∫
x
0
x
f
(
x
,
φ
0
(
x
)
)
d
x
φ
2
(
x
)
=
y
0
+
∫
x
0
x
f
(
x
,
φ
1
(
x
)
)
d
x
.
.
.
φ
n
(
x
)
=
y
0
+
∫
x
0
x
f
(
x
,
φ
n
−
1
(
x
)
)
d
x
\begin{aligned} \varphi_0(x) &= y_0 \\ \varphi_1(x) &= y_0+\int_{x_0}^x f(x,\varphi_0(x))dx \\ \varphi_2(x) &= y_0+\int_{x_0}^x f(x,\varphi_1(x))dx \\ ... \\ \varphi_n(x) &= y_0+\int_{x_0}^x f(x,\varphi_{n-1}(x))dx \end{aligned}
φ0(x)φ1(x)φ2(x)...φn(x)=y0=y0+∫x0xf(x,φ0(x))dx=y0+∫x0xf(x,φ1(x))dx=y0+∫x0xf(x,φn−1(x))dx
如果
φ
n
(
x
)
=
φ
n
+
1
(
x
)
\varphi_n(x) = \varphi_{n+1}(x)
φn(x)=φn+1(x),则
φ
n
(
x
)
\varphi_n(x)
φn(x)就是方程的解。
φ
n
(
x
)
\varphi_n(x)
φn(x)称为初值问题的
n
n
n次近似解.
φ n ( x ) \varphi_n(x) φn(x)是定义在 ∣ x − x 0 ∣ ≤ h |x-x_0|\le h ∣x−x0∣≤h上, h = m i n ( a , b M ) , M = max ( x , y ) ∈ R ∣ f ( x , y ) ∣ h=min\left( a,\frac bM \right),M=\max _{(x, y) \in R}|f(x, y)| h=min(a,Mb),M=max(x,y)∈R∣f(x,y)∣
3 误差分析
第
n
n
n次近似解
φ
n
(
x
)
\varphi_n(x)
φn(x)和真实解
φ
(
x
)
\varphi(x)
φ(x)之间的误差为
∣
φ
n
(
x
)
−
φ
(
x
)
∣
≤
M
L
n
(
n
+
1
)
!
h
n
+
1
\left|\varphi_n(x)-\varphi(x) \right|\le\frac{ML^n}{(n+1)!}h^{n+1}
∣φn(x)−φ(x)∣≤(n+1)!MLnhn+1
在这里 h = m i n ( a , b M ) , M = max ( x , y ) ∈ R ∣ f ( x , y ) ∣ , L h=min\left( a,\frac bM \right),M=\max _{(x, y) \in R}|f(x, y)|,L h=min(a,Mb),M=max(x,y)∈R∣f(x,y)∣,L为利普希茨常数
例题
方程
d
y
d
x
=
x
2
+
y
2
\frac{dy}{dx}=x^2+y^2
dxdy=x2+y2定义在矩形域
R
:
−
1
≤
x
≤
1
,
−
1
≤
y
≤
1
R:-1\le x\le 1,-1\le y \le 1
R:−1≤x≤1,−1≤y≤1上,试利用存在唯一性定理确定经过点
(
0
,
0
)
(0,0)
(0,0)的解的存在区间,并求在此区间上与真正解的误差不超过0.05的近似解的表达式.
解 这里
M
=
max
(
x
,
y
)
∈
R
∣
f
(
x
,
y
)
∣
=
2
,
h
=
min
(
a
,
b
M
)
=
1
2
M=\max_{(x,y)\in R}|f(x,y)|=2,h=\min{(a,\frac bM)}=\frac 12
M=max(x,y)∈R∣f(x,y)∣=2,h=min(a,Mb)=21,在
R
R
R上函数
f
(
x
,
y
)
=
x
2
+
y
2
f(x,y)=x^2+y^2
f(x,y)=x2+y2的利普希茨常数可取为
L
=
2
L=2
L=2.因为对于
∀
x
∈
[
−
1
,
1
]
,
y
1
,
y
2
∈
[
−
1
,
1
]
\forall x \in [-1,1],y_1,y_2\in[-1,1]
∀x∈[−1,1],y1,y2∈[−1,1]
∣
f
(
x
,
y
1
)
−
f
(
x
,
y
2
)
∣
=
∣
y
1
2
−
y
2
2
∣
≤
(
∣
y
1
∣
+
∣
y
2
∣
)
∣
y
1
−
y
2
∣
≤
2
∣
y
1
−
y
2
∣
|f(x,y_1)-f(x,y_2)|=|y_1^2-y_2^2|\le (|y_1|+|y_2|)|y_1-y_2| \le 2|y_1-y_2|
∣f(x,y1)−f(x,y2)∣=∣y12−y22∣≤(∣y1∣+∣y2∣)∣y1−y2∣≤2∣y1−y2∣
因为误差限定在不能超过0.05
∣
φ
n
(
x
)
−
φ
(
x
)
∣
≤
M
L
n
(
n
+
1
)
!
h
n
+
1
=
M
L
1
(
n
+
1
)
!
(
L
h
)
n
+
1
=
1
(
n
+
1
)
!
≤
0.05
|\varphi_n(x)-\varphi(x)|\le \frac{ML^n}{(n+1)!}h^{n+1}=\frac ML \frac {1}{(n+1)!}(Lh)^{n+1}=\frac {1}{(n+1)!}\le0.05
∣φn(x)−φ(x)∣≤(n+1)!MLnhn+1=LM(n+1)!1(Lh)n+1=(n+1)!1≤0.05
所以可以取
n
=
3
n=3
n=3.
我们构造逐步逼近序列
φ
0
(
x
)
=
0
,
φ
1
(
x
)
=
∫
0
x
[
ξ
2
+
φ
0
2
(
ξ
)
]
d
ξ
=
x
3
3
,
φ
2
(
x
)
=
∫
0
x
[
ξ
2
+
φ
1
2
(
ξ
)
]
d
ξ
=
x
3
3
+
x
7
63
,
φ
3
(
x
)
=
∫
0
x
[
ξ
2
+
φ
2
2
(
ξ
)
]
d
ξ
=
∫
0
x
(
ξ
2
+
ξ
6
9
+
2
ξ
10
189
+
ξ
14
3969
)
d
ξ
=
x
3
3
+
x
7
63
+
2
x
11
2079
+
x
15
59535
\begin{aligned} \varphi_0(x) &= 0,\\ \varphi_1(x) &= \int_0^x[\xi^2+\varphi^2_0(\xi)]d\xi=\frac{x^3}{3},\\ \varphi_2(x)&=\int_0^x[\xi^2+\varphi^2_1(\xi)]d\xi=\frac{x^3}{3}+\frac{x^7}{63},\\ \varphi_3(x)&=\int_0^x[\xi^2+\varphi_2^2(\xi)]d\xi\\ &=\int_0^x(\xi^2+\frac{\xi^6}{9}+\frac{2\xi^{10}}{189}+\frac{\xi^{14}}{3969})d\xi\\ &=\frac{x^3}{3}+\frac{x^7}{63}+\frac{2x^{11}}{2079}+\frac{x^{15}}{59535} \end{aligned}
φ0(x)φ1(x)φ2(x)φ3(x)=0,=∫0x[ξ2+φ02(ξ)]dξ=3x3,=∫0x[ξ2+φ12(ξ)]dξ=3x3+63x7,=∫0x[ξ2+φ22(ξ)]dξ=∫0x(ξ2+9ξ6+1892ξ10+3969ξ14)dξ=3x3+63x7+20792x11+59535x15
则
φ
3
(
x
)
\varphi_3(x)
φ3(x)即为所求.