一阶线性方程的解法

二、一阶微分方程的初等解法

2.1 变量分离方程与变量変换

2.1.1 变量分离方程

变量分离方程定义

形如
d y d x = f ( x ) ϕ ( y ) \frac {dy}{dx}=f(x) \phi(y) dxdy=f(x)ϕ(y)
的方程称为变量分离方程,这里 f ( x ) 、 g ( y ) f(x)、g(y) f(x)g(y)分别是 x , y x,y x,y的连续函数.

求解方程的方法

如果 ϕ ( y ) ≠ 0 \phi(y) \ne 0 ϕ(y)=0,我们可以将原方程改写为
d y ϕ ( y ) = f ( x ) d x \frac {dy}{\phi(y)}=f(x)dx ϕ(y)dy=f(x)dx
也就是将含 y y y的部分放到等号的一边,将含 x x x的部分放到等号的另一边,这样变量就“分离”开了.两边积分得到
∫ d y ϕ ( y ) = ∫ f ( x ) d x + c \int \frac {dy}{\phi(y)} = \int f(x) dx + c ϕ(y)dy=f(x)dx+c
这里的积分 ∫ d y ϕ ( y ) 、 ∫ f ( x ) d x \int \frac {dy}{\phi(y)} 、 \int f(x) dx ϕ(y)dyf(x)dx都理解为 ϕ ( y ) 、 f ( x ) \phi(y)、f(x) ϕ(y)f(x)的一个原函数。

例题

例1 求解方程
d y d x = − x y \frac {dy}{dx}=-\frac xy dxdy=yx
将变量分离得到
y d y = − x d x ydy=-xdx ydy=xdx
两边积分得到
y 2 2 = − x 2 2 + C 2 \frac {y^2}2= - \frac {x^2}2 + \frac C2 2y2=2x2+2C
化简得到通解为
x 2 + y 2 = C x^2+y^2=C x2+y2=C

例2 求解方程
d y d x = P ( x ) y \frac {dy}{dx}=P(x)y dxdy=P(x)y
的通解,其中 P ( x ) P(x) P(x) x x x的连续函数

分离变量, y ≠ 0 y \ne 0 y=0时,有
d y y = P ( x ) d x \frac {dy}y = P(x)dx ydy=P(x)dx
两边积分得到
ln ⁡ ∣ y ∣ = ∫ P ( x ) d x + c 1 \ln {|y|} = \int {P(x)dx} + c_1 lny=P(x)dx+c1
两边取 e e e指数得
∣ y ∣ = e ∫ P ( x ) d x + c 1 |y|=e^{\int P(x)dx+c_1} y=eP(x)dx+c1

y = ± e c 1 e ∫ P ( x ) d x y=\pm e^{c_1}e^{\int{P(x)dx}} y=±ec1eP(x)dx
± e c 1 = c \pm e^{c_1}=c ±ec1=c可得
y = c e ∫ P ( x ) d x y=ce^{\int{P(x)dx}} y=ceP(x)dx
y = 0 y=0 y=0时,显然也是方程的解,所以在上述解中令 c = 0 c=0 c=0也就是 y = 0 y=0 y=0,所以方程的通解为
y = c e ∫ P ( x ) d x       c ∈ R y=ce^{\int{P(x)dx}} \ \ \ \ \ c\in R y=ceP(x)dx     cR

2.1.2 可化为变量分离方程的类型

(1)齐次微分方程

形如
d y d x = g ( y x ) \frac {dy}{dx}=g(\frac yx) dxdy=g(xy)
的方程,称为齐次微分方程,这里 g ( u ) g(u) g(u) u u u的连续函数.

求解方程的方法

做变量变换
u = y x u=\frac yx u=xy
y = u x y=ux y=ux,于是
d y d x = d ( u x ) d x = x d u d x + u \frac {dy}{dx}=\frac {d(ux)}{dx}=x \frac {du}{dx}+u dxdy=dxd(ux)=xdxdu+u
带入到原方程得
d y d x = x d u d x + u = g ( u ) \frac {dy}{dx}=x \frac {du}{dx}+u = g(u) dxdy=xdxdu+u=g(u)
整理得
d u d x = 1 x ( g ( u ) − u ) \frac {du}{dx}=\frac1x \left( g(u) - u \right) dxdu=x1(g(u)u)
经过变量变换后的方程是一个变量分离方程,可以按 2.1.1 2.1.1 2.1.1的方法求解,求解完成后带回原变量便得到齐次微分方程的解.

例题

例3 求解方程
d y d x = y x + tan ⁡ y x \frac {dy}{dx} = \frac yx + \tan \frac yx dxdy=xy+tanxy
u = y x u= \frac yx u=xy,则有 d y d x = x d u d x + u \frac {dy}{dx}=x \frac {du}{dx} + u dxdy=xdxdu+u ,原方程可以变为
x d u d x + u = u + tan ⁡ u x \frac {du}{dx}+u=u+ \tan u xdxdu+u=u+tanu
化简得
d u d x = tan ⁡ u x \frac {du}{dx}=\frac{\tan u}x dxdu=xtanu
分离变量得
d u tan ⁡ u = d x x \frac {du}{\tan u} = \frac {dx}x tanudu=xdx
两边积分得到
ln ⁡ ∣ sin ⁡ u ∣ = l n ∣ x ∣ + c 1 \ln \left|\sin u \right| = ln \left| x \right| + c_1 lnsinu=lnx+c1
这里 c 1 c_1 c1是任意常数,整理后得到
sin ⁡ u = c x       c ≠ 0 \sin u=cx \ \ \ \ \ c\ne0 sinu=cx     c=0
此外,方程还有解
sin ⁡ u = 0 \sin u=0 sinu=0
对应 c = 0 c=0 c=0的情况,所以原方程的解为
sin ⁡ u = c x       c ∈ R \sin u=cx \ \ \ \ \ c\in R sinu=cx     cR
带回变量 u = y x u=\frac yx u=xy
sin ⁡ y x = c x       c ∈ R \sin {\frac yx}=cx \ \ \ \ \ c\in R sinxy=cx     cR
(2)形如
d y d x = a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 \frac {dy}{dx}=\frac {a_1x+b_1y+c_1}{a_2x+b_2y+c_2} dxdy=a2x+b2y+c2a1x+b1y+c1
的方程也可以经过变量变换化为变量分离方程,其中 a 1 , a 2 , b 1 , b 2 , c 1 , c 2 a_1,a_2,b_1,b_2,c_1,c_2 a1,a2,b1,b2,c1,c2均为常数

我们分三种情况来讨论:

a 1 a 2 = b 1 b 2 = c 1 c 2 = k ( 常数 ) \frac{a_1} {a_2}=\frac{b_1}{b_2} = \frac{c_1}{c_2}=k \left( \text{常数} \right) a2a1=b2b1=c2c1=k(常数)情形

这时方程化为
d y d x = k \frac {dy}{dx}=k dxdy=k
有通解
y = k x + c y=kx+c y=kx+c
其中 c ∈ R c \in R cR

a 1 a 2 = b 1 b 2 = k ≠ c 1 c 2 \frac {a_1} {a_2} = \frac {b_1}{b_2}=k \ne \frac{c_1}{c_2} a2a1=b2b1=k=c2c1情形

u = a 2 x + b 2 y u=a_2 x + b_2 y u=a2x+b2y,这时有
d u d x = a 2 + b 2 d y d x = a 2 + b 2 k u + c 1 u + c 2 \frac {du}{dx}=a_2 + b_2 \frac {dy}{dx}=a_2 + b_2 \frac{ku+c_1}{u+c_2} dxdu=a2+b2dxdy=a2+b2u+c2ku+c1
是变量分离方程

a 1 a 2 ≠ b 1 b 2 \frac{a_1}{a_2} \ne \frac {b_1}{b_2} a2a1=b2b1情形

如果原方程中 c 1 , c 2 c_1,c_2 c1,c2不全为0,方程右端分子分母都是关于x,y的一次多项式,因此
{ a 1 x + b 1 y + c 1 = 0 , a 2 x + b 2 y + c 2 = 0 \left\{ \begin{array}{l} a_1x+b_1y+c_1=0, & \\ a_2x+b_2y+c_2=0 \end{array} \right. {a1x+b1y+c1=0,a2x+b2y+c2=0
代表 x O y xOy xOy平面上两条相交的直线,设交点为 ( α , β ) (\alpha,\beta) (α,β).若令
{ X = x − α Y = y − β \left\{ \begin{array}{l} X=x-\alpha & \\ Y=y-\beta \end{array} \right . {X=xαY=yβ

则方程化为
{ a 1 X + b 1 Y = 0 a 2 X + b 2 Y = 0 \left \{ \begin{array}{l} a_1X+b_1Y=0 & \\ a_2X+b_2Y=0 \end{array} \right. {a1X+b1Y=0a2X+b2Y=0
原方程就可以写成
d Y d X = a 1 X + b 1 Y a 2 X + b 2 Y = a 1 + b 1 Y X a 2 + b 2 Y X = g ( Y X ) \frac {dY}{dX}=\frac{a_1X+b_1Y}{a_2X+b_2Y}=\frac{a_1+b_1\frac YX}{a_2+b_2 \frac YX}=g(\frac YX) dXdY=a2X+b2Ya1X+b1Y=a2+b2XYa1+b1XY=g(XY)
就变成了齐次方程,接下来再使用变量分离的方法即可.

例4 求解方程
d y d x = x − y + 1 x + y − 3 \frac {dy}{dx} = \frac {x-y+1}{x+y-3} dxdy=x+y3xy+1
解方程组
{ x − y + 1 = 0 , x + y − 3 = 0 , \left\{ \begin{array}{l} x-y+1=0, & \\ x+y-3=0, \end{array} \right. {xy+1=0,x+y3=0,
得到 x = 1 , y = 2 x=1,y=2 x=1,y=2.令
{ x = X + 1 y = Y + 2 \left \{ \begin{array}{l} x=X+1& \\ y=Y+2 \end{array} \right. {x=X+1y=Y+2
代入原方程得到
d Y d X = X − Y X + Y \frac {dY}{dX}=\frac {X-Y}{X+Y} dXdY=X+YXY
u = Y X u=\frac YX u=XY,即 Y = u X Y=uX Y=uX.则上式可化为
d X X = 1 + u 1 − 2 u − u 2 d u \frac {dX}X=\frac{1+u}{1-2u-u^2}du XdX=12uu21+udu
两边积分得到
ln ⁡ x 2 = − ln ⁡ ∣ u 2 + 2 u − 1 ∣ + c 1 \ln x^2 = - \ln {\left| u^2+2u-1 \right|} + c_1 lnx2=lnu2+2u1+c1
化简得
X 2 ( u 2 + 2 u − 1 ) = c 2 X^2(u^2+2u-1)=c_2 X2(u2+2u1)=c2
带回原变量得
Y 2 + 2 X Y − X 2 = c 2 ( y − 2 ) 2 + 2 ( x − 1 ) ( y − 2 ) − ( x − 1 ) 2 = c 2 Y^2+2XY-X^2=c_2 \\ (y-2)^2+2(x-1)(y-2)-(x-1)^2=c_2 Y2+2XYX2=c2(y2)2+2(x1)(y2)(x1)2=c2

另外,容易验证
u 2 + 2 u − 1 = 0 u^2+2u-1=0 u2+2u1=0

Y 2 + 2 X Y − X 2 = 0 Y^2+2XY-X^2=0 Y2+2XYX2=0
也是原方程的解,因此原方程的通解为
y 2 + 2 x y − x 2 − 6 y − 2 x = c       c ∈ R y^2+2xy-x^2-6y-2x=c \ \ \ \ \ c\in R y2+2xyx26y2x=c     cR

2.2一阶线性微分方程与常数变异法

一阶线性微分方程
d y   d x = P ( x ) y + Q ( x ) (1) \frac{\mathrm{d} y}{\mathrm{~d} x}=P(x) y+Q(x) \tag{1}  dxdy=P(x)y+Q(x)(1)
其中 P ( x ) , Q ( x ) P(x),Q(x) P(x),Q(x)在考虑的区间上式 x x x的连续函数,若 Q ( x ) = 0 Q(x)=0 Q(x)=0 ( ∗ ) (*) ()变为
d y   d x = P ( x ) y (2) \frac{\mathrm{d} y}{\mathrm{~d} x}=P(x) y \tag{2}  dxdy=P(x)y(2)
称为一阶齐次线性微分方程,若 Q ( x ) ≠ 0 Q(x) \ne 0 Q(x)=0 则称 ( 1 ) \left(1\right) (1)为一阶非齐次线性微分方程

( 2 ) (2) (2)为变量分离方程,我们可以解出他的通解为
y = c e ∫ P ( x ) d x       c ∈ R (3) y=c \mathrm{e}^{\int P(x) \mathrm{d} x} \ \ \ \ \ c\in R \tag{3} y=ceP(x)dx     cR(3)
现在讨论方程 ( 1 ) (1) (1)的解法,不难看出, ( 2 ) (2) (2) ( 1 ) (1) (1)的特殊情况,如果我们在 ( 2 ) (2) (2)的解中将常数 c c c变为关于 x x x的函数 c ( x ) c(x) c(x),即
y = c ( x ) e ∫ P ( x ) d x (4) y=c(x) \mathrm{e}^{\int P(x) \mathrm{d} x} \tag{4} y=c(x)eP(x)dx(4)
两边对 x x x求导数得到
d y   d x = d c ( x ) d x e ∫ P ( x ) d x + c ( x ) P ( x ) e ∫ P ( x ) d x (5) \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} c(x)}{\mathrm{d} x} \mathrm{e}^{\int P(x) \mathrm{d} x}+c(x) P(x) \mathrm{e}^{\int P(x) \mathrm{d} x} \tag5  dxdy=dxdc(x)eP(x)dx+c(x)P(x)eP(x)dx(5)
( 5 ) (5) (5) ( 4 ) (4) (4)代入到 ( 3 ) (3) (3)
d c ( x ) d x e ∫ P ( x ) d x + c ( x ) P ( x ) e ∫ P ( x ) d x = P ( x ) c ( x ) e ∫ P ( x ) d x + Q ( x ) \begin{array}{l} \frac{\mathrm{d} c(x)}{\mathrm{d} x} \mathrm{e}^{\int P(x) \mathrm{d} x}+c(x) P(x) \mathrm{e}^{\int P(x) \mathrm{d} x} =P(x) c(x) \mathrm{e}^{\int P(x) \mathrm{d} x}+Q(x) \end{array} dxdc(x)eP(x)dx+c(x)P(x)eP(x)dx=P(x)c(x)eP(x)dx+Q(x)

d c ( x ) d x = Q ( x ) e − ∫ P ( x ) d x \frac{\mathrm{d} c(x)}{\mathrm{d} x}=Q(x) \mathrm{e}^{ -\int P(x) \mathrm{d} x} dxdc(x)=Q(x)eP(x)dx
积分后得到
c ( x ) = ∫ Q ( x ) e − ∫ P ( x ) d x   d x + c ~ (6) c(x)=\int Q(x) \mathrm{e}^{-\int P(x) \mathrm{d} x} \mathrm{~d} x+\tilde{c} \tag6 c(x)=Q(x)eP(x)dx dx+c~(6)
这里 c ~ \tilde{c} c~是任意常数,将 ( 6 ) (6) (6)代入到 ( 4 ) (4) (4)中得到方程的通解
y = e ∫ P ( x ) d x ( ∫ Q ( x ) e − ∫ P ( x ) d x   d x + c ~ ) (7) y=\mathrm{e}^{\int P(x) \mathrm{d} x}\left(\int Q(x) \mathrm{e}^{-\int P(x) \mathrm{d} x} \mathrm{~d} x+\widetilde{c}\right) \tag7 y=eP(x)dx(Q(x)eP(x)dx dx+c )(7)
例题

例1 求方程 ( x + 1 ) d y   d x − n y = e x ( x + 1 ) n + 1 (x+1) \frac{\mathrm{d} y}{\mathrm{~d} x}-n y=\mathrm{e}^{x}(x+1)^{n+1} (x+1) dxdyny=ex(x+1)n+1的通解,这里 n n n为常数

将方程改写为
d y   d x = n x + 1 y + e x ( x + 1 ) n \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{n}{x+1} y+\mathrm{e}^{x}(x+1)^{n}  dxdy=x+1ny+ex(x+1)n
所以 P ( x ) = n x + 1 , Q ( x ) = e x ( x + 1 ) n P(x)=\frac n{x+1} , Q(x)=e^x(x+1)^n P(x)=x+1n,Q(x)=ex(x+1)n

所以根据 ( 7 ) (7) (7)
y = e ∫ P ( x ) d x ( ∫ Q ( x ) e − ∫ P ( x ) d x   d x + c ~ ) = e ∫ n x + 1 d x ( ∫ e x ( x + 1 ) n e − ∫ n x + 1 d x   d x + c ~ ) = ( x + 1 ) n ( ∫ e x ( x + 1 ) n 1 ( x + 1 ) n d x + c ~ ) = ( x + 1 ) n ( e x + c ~ ) \begin{aligned} y & = \mathrm{e}^{\int P(x) \mathrm{d} x}\left(\int Q(x) \mathrm{e}^{-\int P(x) \mathrm{d} x} \mathrm{~d} x+\widetilde{c}\right)\\ & = \mathrm{e}^{\int \frac n{x+1} \mathrm{d} x}\left(\int e^x(x+1)^n \mathrm{e}^{-\int \frac n{x+1} \mathrm{d} x} \mathrm{~d} x+\widetilde{c}\right) \\ & = (x+1)^n \left( \int e^x(x+1)^n \frac1{(x+1)^n}dx + \widetilde c \right) \\ & = (x+1)^n(e^x+\widetilde c) \end{aligned} y=eP(x)dx(Q(x)eP(x)dx dx+c )=ex+1ndx(ex(x+1)nex+1ndx dx+c )=(x+1)n(ex(x+1)n(x+1)n1dx+c )=(x+1)n(ex+c )
即为方程的通解.

例2 求方程 d y   d x = y 2 x − y 2 \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{2 x-y^{2}}  dxdy=2xy2y的通解

原方程不是关于 y y y的一阶线性微分方程,所以我们可以将它变形
d x   d y = 2 x − y 2 y \frac{\mathrm{d} x}{\mathrm{~d} y}=\frac{2 x-y^{2}}{y}  dydx=y2xy2

d x   d y = 2 y x − y \frac{\mathrm{d} x}{\mathrm{~d} y}=\frac{2}{y} x-y  dydx=y2xy
所以 x x x关于 y y y的函数是一个一阶线性微分方程

代入公式得
x = y 2 ( c ~ − ln ⁡ ∣ y ∣ ) x=y^{2}(\tilde{c}-\ln |y|) x=y2(c~lny)
即为方程的通解.

2.3恰当分方程与积分因子

2.3.1恰当微分方程

我们可以将一阶方程
d y d x = f ( x , y ) \frac {dy}{dx}=f(x,y) dxdy=f(x,y)
写成微分的形式
d y − f ( x , y ) d x = 0 dy-f(x,y)dx=0 dyf(x,y)dx=0
或者把 x , y x,y x,y平等看待,写成如下具有对称形式的一阶微分方程
M ( x , y ) d x + N ( x , y ) d y = 0 (1) M(x,y)dx+N(x,y)dy=0 \tag1 M(x,y)dx+N(x,y)dy=0(1)
这里假设 M ( x , y ) , N ( x , y ) M(x,y),N(x,y) M(x,y),N(x,y)在某矩形域内是 x , y x,y x,y的连续函数,且具有连续的一阶偏导数。

如果方程 ( 1 ) (1) (1)恰好是某个二元函数 u ( x , y ) u(x,y) u(x,y)的全微分,即
M ( x , y ) d x + N ( x , y ) d y = d u ( x , y ) = ∂ u ∂ x   d x + ∂ u ∂ y   d y , (2) \begin{aligned} M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y &=\mathrm{d} u(x, y) \\ &=\frac{\partial u}{\partial x} \mathrm{~d} x+\frac{\partial u}{\partial y} \mathrm{~d} y, \end{aligned} \tag2 M(x,y)dx+N(x,y)dy=du(x,y)=xu dx+yu dy,(2)
则称 ( 1 ) (1) (1)恰当微分方程,易得方程 ( 1 ) (1) (1)的通解为
u ( x , y ) = c u(x,y)=c u(x,y)=c
这里 c c c是任意常数

而满足恰当微分方程的充要条件为
∂ M ∂ y = ∂ N ∂ x (3) \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \tag3 yM=xN(3)
例题

例1 ( 3 x 2 + 6 x y 2 ) d x + ( 6 x 2 y + 4 y 3 ) d y = 0 \left(3 x^{2}+6 x y^{2}\right) \mathrm{d} x+\left(6 x^{2} y+4 y^{3}\right) \mathrm{d} y=0 (3x2+6xy2)dx+(6x2y+4y3)dy=0的通解.

观察到
∂ M ∂ y = 12 x y ∂ N ∂ x = 12 x y ∂ M ∂ y = ∂ M ∂ x \begin{aligned} \frac {\partial M}{\partial y} & = 12xy \\ \frac {\partial N}{\partial x} & = 12xy \\ \frac {\partial M}{\partial y} & = \frac {\partial M}{\partial x} \end{aligned} yMxNyM=12xy=12xy=xM
所以该方程是一个恰当微分方程

将方程的括号打开得到
3 x 2 d x + 4 y 3 d y + 6 x y ( y d x + x d y ) = 0 3x^2dx+4y^3dy+6xy(ydx+xdy)=0 3x2dx+4y3dy+6xy(ydx+xdy)=0

d ( x 3 ) + d ( y 4 ) + d ( 3 ( x y ) 2 ) = 0 d\left( x^3 \right) + d\left( y^4 \right) + d(3(xy)^2)=0 d(x3)+d(y4)+d(3(xy)2)=0
根据微分的可加性得到
d ( x 3 + y 4 + 3 x 2 y 2 ) = 0 d(x^3+y^4+3x^2y^2)=0 d(x3+y4+3x2y2)=0

x 3 + y 4 + 3 x 2 y 2 = c x^3+y^4+3x^2y^2=c x3+y4+3x2y2=c
这里 c c c是任意常数

上述这种分项组合办法总是用在恰当微分方程中,先把本身已经构成全微分的项分出,再把剩下的项凑成全微分,这种方法要求熟记一些简单二元函数的全微分,如:
y   d x + x   d y = d ( x y ) , y   d x − x   d y y 2 = d ( x y ) , − y   d x + x   d y x 2 = d ( y x ) , y   d x − x   d y x y = d ( ln ⁡ ∣ x y ∣ ) , y   d x − x   d y x 2 + y 2 = d ( arctan ⁡ x y ) , y   d x − x   d y x 2 − y 2 = 1 2   d ( ln ⁡ ∣ x − y x + y ∣ ) } (4) \left.\begin{array}{l} y \mathrm{~d} x+x \mathrm{~d} y=\mathrm{d}(x y), \\ \frac{y \mathrm{~d} x-x \mathrm{~d} y}{y^{2}}=\mathrm{d}\left(\frac{x}{y}\right), \\ \frac{-y \mathrm{~d} x+x \mathrm{~d} y}{x^{2}}=\mathrm{d}\left(\frac{y}{x}\right), \\ \frac{y \mathrm{~d} x-x \mathrm{~d} y}{x y}=\mathrm{d}\left(\ln \left|\frac{x}{y}\right|\right), \\ \frac{y \mathrm{~d} x-x \mathrm{~d} y}{x^{2}+y^{2}}=\mathrm{d}\left(\arctan \frac{x}{y}\right), \\ \frac{y \mathrm{~d} x-x \mathrm{~d} y}{x^{2}-y^{2}}=\frac{1}{2} \mathrm{~d}\left(\ln \left|\frac{x-y}{x+y}\right|\right) \end{array}\right\} \tag4 y dx+x dy=d(xy),y2y dxx dy=d(yx),x2y dx+x dy=d(xy),xyy dxx dy=d(lnyx),x2+y2y dxx dy=d(arctanyx),x2y2y dxx dy=21 d(lnx+yxy)(4)

2.3.2 积分因子

恰当微分方程可以通过分项组合的方法凑出一个函数的全微分,并求出原方程的通解。但是绝大多数方程并不是恰当微分方程,那么非恰当方程转化为恰当方程就要借助积分因子来转化。

积分因子定义:如果存在连续可微的函数 μ = μ ( x , y ) ≠ 0 \mu=\mu(x,y)\ne 0 μ=μ(x,y)=0,使得
μ ( x , y ) M ( x , y ) d x + μ ( x , y ) N ( x , y ) d y = 0 \mu(x, y) M(x, y) \mathrm{d} x+\mu(x, y) N(x, y) \mathrm{d} y=0 μ(x,y)M(x,y)dx+μ(x,y)N(x,y)dy=0
为恰当微分方程,即存在函数 ν \nu ν使得
μ M   d x + μ N   d y ≡ d ν \mu M \mathrm{~d} x+\mu N \mathrm{~d} y \equiv \mathrm{d} \nu μM dx+μN dydν
则称 μ ( x , y ) \mu (x,y) μ(x,y)为方程 ( 1 ) (1) (1)的积分因子.

**注意:**对于同一个方程,积分因子可以有很多个。

积分因子的求法:

对于方程
M ( x , y ) d x + N ( x , y ) d y = 0 (*) M(x,y)dx+N(x,y)dy=0 \tag{*} M(x,y)dx+N(x,y)dy=0(*)
只有与 x x x有关的积分因子的充要条件是
∂ M ∂ y − ∂ N ∂ x N = ψ ( x ) (5) \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}=\psi(x) \tag5 NyMxN=ψ(x)(5)
这里 ψ ( x ) \psi(x) ψ(x)是只与 x x x有关的函数,从而求得方程 ( ∗ ) (*) ()的一个积分因子
μ = e ∫ ψ ( x ) d x \mu = e^{\int \psi(x)dx} μ=eψ(x)dx
同理 ( ∗ ) (*) ()有只与 y y y有关的积分因子的充要条件为
∂ M ∂ y − ∂ N ∂ x − M = φ ( y ) \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{-M}=\varphi(y) MyMxN=φ(y)
这里 ϕ ( y ) \phi(y) ϕ(y)是只与 y y y有关的函数.从而求得方程 ( ∗ ) (*) ()的一个积分因子
μ = e ∫ φ ( y ) d y \mu = e^{\int \varphi(y)dy} μ=eφ(y)dy

2.4 一节隐式微分方程与参数表示

2.4.1 可以解出 y y y(或 x x x)的方程

(1)首先讨论形如
y = f ( x , d y d x ) (1) y=f(x,\frac{dy}{dx}) \tag1 y=f(x,dxdy)(1)
的方程的解法,这里假设函数 f ( x , d y d x ) f(x,\frac{dy}{dx}) f(x,dxdy)有连续的偏导数.

引进参数 d y d x = p \frac {dy}{dx}=p dxdy=p ( 1 ) (1) (1)变为
y = f ( x , p ) (1.1) y=f(x,p) \tag{1.1} y=f(x,p)(1.1)
( 2 ) (2) (2)两边对 x x x求导数得到
p = ∂ f ∂ x + ∂ f ∂ p d p d x . (1.2) p=\frac{\partial f}{\partial x} + \frac{\partial f}{\partial p}\frac{dp}{dx}.\tag{1.2} p=xf+pfdxdp.(1.2)
方程 ( 1.2 ) (1.2) (1.2)是关于 x , p x,p x,p的一个一阶微分方程,所以可以解得
p = φ ( x , c ) p=\varphi(x,c) p=φ(x,c)
代入 ( 1.1 ) (1.1) (1.1)得到
y = f ( x , φ ( x , c ) ) y=f(x,\varphi(x,c)) y=f(x,φ(x,c))
即为 ( 1 ) (1) (1)的通解

若得到 ( 1.2 ) (1.2) (1.2)的通解的形式为
x = ψ ( p , c ) x=\psi(p,c) x=ψ(p,c)
则得到 ( 1 ) (1) (1)的参数形式的通解为
{ x = ψ ( p , c ) y = f ( ψ ( p , c ) , p ) \left\{ \begin{array}{l} x=\psi(p,c) \\ y=f(\psi(p,c),p) \end{array} \right. {x=ψ(p,c)y=f(ψ(p,c),p)
其中 p p p是参数, c c c是任意常数

若求得 ( 1.2 ) (1.2) (1.2)的通解形式为
Φ ( x , p , c ) = 0 \Phi(x,p,c)=0 Φ(x,p,c)=0
则得到 ( 1 ) (1) (1)的参数形式的通解为
{ Φ ( x , p , c ) = 0 y = f ( x , p ) \left\{ \begin{array}{l} \Phi(x,p,c)=0 \\ y=f(x,p) \end{array} \right. {Φ(x,p,c)=0y=f(x,p)

例题

例1 求方程 ( d y   d x ) 3 + 2 x d y   d x − y = 0 \left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{3}+2 x \frac{\mathrm{d} y}{\mathrm{~d} x}-y=0 ( dxdy)3+2x dxdyy=0的解

解出 y y y,并令 d y d x = p \frac {dy}{dx}=p dxdy=p,得到
y = p 3 + 2 x p (*) y=p^3+2xp \tag{*} y=p3+2xp(*)
两边对 x x x求导数得到
p = 3 p 2 d p d x + 2 x d p d x + 2 p p=3p^2 \frac {dp}{dx} + 2x \frac{dp}{dx}+2p p=3p2dxdp+2xdxdp+2p

3 p 2 d p + 2 x d p + p d x = 0 3p^2dp+2xdp+pdx=0 3p2dp+2xdp+pdx=0
p ≠ 0 p\ne 0 p=0时,上式乘 p p p得到
3 p 3 d p + 2 x p d p + p d x = 0 3p^3dp+2xpdp+pdx=0 3p3dp+2xpdp+pdx=0
两边积分得到
3 p 4 4 + x p 2 = c \frac {3p^4}4 + xp^2=c 43p4+xp2=c
解出 x x x得到
x = c − 3 4 p 4 p 2 x=\frac {c-\frac34p^4}{p^2} x=p2c43p4
将其代入 ( ∗ ) (*) ()方程得到
y = p 3 + 2 ( c − 3 4 p 4 ) p y=p^3+\frac {2\left( c-\frac34p^4 \right)}{p} y=p3+p2(c43p4)
因此得到原方程的参数形式的通解
{ x = c p 2 − 3 4 p 2 , y = 2 c p − 1 2 p 3 p ≠ 0 \left\{\begin{array}{l} x=\frac{c}{p^{2}}-\frac{3}{4} p^{2}, \\ y=\frac{2 c}{p}-\frac{1}{2} p^{3} \end{array} \quad p \neq 0\right. {x=p2c43p2,y=p2c21p3p=0
p = 0 p=0 p=0时,由 ( ∗ ) (*) ()易得 y = 0 y=0 y=0也是方程的解.

②形如
x = f ( y , d y d x ) (2) x=f\left(y, \frac{dy}{dx} \right) \tag2 x=f(y,dxdy)(2)

引进参数 p = d y d x p= \frac {dy}{dx} p=dxdy两边对 y y y求导会得到
1 p = d x d y = ∂ f ∂ y + ∂ f ∂ p d p d y \frac1p=\frac{dx}{dy}=\frac {\partial f}{\partial y}+\frac{\partial f}{\partial p}\frac {d p}{d y} p1=dydx=yf+pfdydp
其他步骤和①相同.

2.4.2 不显含 x x x(或 y y y)的方程

③形如
F ( x , y ′ ) = 0 (3) F(x,y^\prime)=0\tag3 F(x,y)=0(3)

p = d y d x p=\frac{dy}{dx} p=dxdy我们可以将 ( 3 ) (3) (3)表示成参数形式
{ x = φ ( t ) p = ψ ( t ) (3.1) \left\{ \begin{array}{l} x=\varphi(t) \\ p=\psi(t) \end{array} \right.\tag{3.1} {x=φ(t)p=ψ(t)(3.1)
因为
d y = p   d x dy=p \ dx dy=p dx
所以
d y = ψ ( t ) φ ′ ( t ) d t y = ∫ ψ ( t ) φ ′ ( t ) d t + c dy=\psi(t) \varphi^{\prime}(t)dt \\ y=\int \psi(t) \varphi^{\prime}(t)dt+c dy=ψ(t)φ(t)dty=ψ(t)φ(t)dt+c
所以方程的通解为
{ x = φ ( t ) y = ∫ ψ ( t ) φ ′ ( t ) d t + c \left\{ \begin{array}{l} x=\varphi(t) \\ y=\int \psi(t) \varphi^{\prime}(t)dt+c \end{array} \right. {x=φ(t)y=ψ(t)φ(t)dt+c
其中 c c c是任意常数

④形如
F ( y , y ′ ) = 0 (4) F(y,y^\prime)=0 \tag4 F(y,y)=0(4)

和③步骤相同,令 p = y ′ p=y^{\prime} p=y,则有
{ y = φ ( t ) p = ψ ( t ) \left\{ \begin{array}{l} y=\varphi(t) \\ p=\psi(t) \end{array} \right. {y=φ(t)p=ψ(t)
d y = p d x dy=pdx dy=pdx则有
φ ′ ( t ) d t = ψ ( t ) d x \varphi^{\prime}(t)dt=\psi(t)dx φ(t)dt=ψ(t)dx
所以
d x = φ ′ ( t ) ψ ( t ) d t {dx} = \frac{\varphi^{\prime}(t)}{\psi(t)}{dt} dx=ψ(t)φ(t)dt
得到
x = ∫ φ ′ ( t ) ψ ( t ) d t + c x=\int\frac{\varphi^{\prime}(t)}{\psi(t)}{dt}+c x=ψ(t)φ(t)dt+c
所以方程的解为
{ x = ∫ φ ′ ( t ) ψ ( t ) d t + c y = φ ( t ) \left\{\begin{array}{l} x=\int \frac{\varphi^{\prime}(t)}{\psi(t)} \mathrm{d} t+c \\ y=\varphi(t) \end{array}\right. {x=ψ(t)φ(t)dt+cy=φ(t)
其中 c c c为任意常数

  • 10
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值