线性微分方程组

线性微分方程组

1. 存在唯一性定理

形如
{ x 1 ′ = a 11 ( t ) x 1 + a 12 ( t ) x 2 + ⋯ + a 1 n ( t ) x n + f 1 ( t ) x 2 ′ = a 21 ( t ) x 1 + a 22 ( t ) x 2 + ⋯ + a 2 n ( t ) x n + f 2 ( t ) ⋯ ⋯ ⋯ ⋯ x n ′ = a n 1 ( t ) x 1 + a n 2 ( t ) x 2 + ⋯ + a n n ( t ) x n + f n ( t ) (1) \left\{\begin{array}{l} x_{1}^{\prime}=a_{11}(t) x_{1}+a_{12}(t) x_{2}+\cdots+a_{1 n}(t) x_{n}+f_{1}(t) \\ x_{2}^{\prime}=a_{21}(t) x_{1}+a_{22}(t) x_{2}+\cdots+a_{2 n}(t) x_{n}+f_{2}(t) \\ \cdots \cdots \cdots \cdots \\ x_{n}^{\prime}=a_{n 1}(t) x_{1}+a_{n 2}(t) x_{2}+\cdots+a_{n n}(t) x_{n}+f_{n}(t) \end{array}\right. \tag1 x1=a11(t)x1+a12(t)x2++a1n(t)xn+f1(t)x2=a21(t)x1+a22(t)x2++a2n(t)xn+f2(t)xn=an1(t)x1+an2(t)x2++ann(t)xn+fn(t)(1)
的叫做线性微分方程组.

引入几个记号
A ( t ) = [ a 11 ( t ) a 12 ( t ) ⋯ a 1 n ( t ) a 21 ( t ) a 22 ( t ) ⋯ a 2 n ( t ) ⋮ ⋮ ⋮ a n 1 ( t ) a n 2 ( t ) ⋯ a n n ( t ) ] (2) \boldsymbol{A}(t)=\left[\begin{array}{cccc} a_{11}(t) & a_{12}(t) & \cdots & a_{1 n}(t) \\ a_{21}(t) & a_{22}(t) & \cdots & a_{2 n}(t) \\ \vdots & \vdots & & \vdots \\ a_{n 1}(t) & a_{n 2}(t) & \cdots & a_{n n}(t) \end{array}\right] \tag2 A(t)=a11(t)a21(t)an1(t)a12(t)a22(t)an2(t)a1n(t)a2n(t)ann(t)(2)
n × n n ×n n×n矩阵,它的元素是 n 2 n^2 n2个函数
f ( t ) = [ f 1 ( t ) f 2 ( t ) ⋮ f n ( t ) ] , x = [ x 1 x 2 ⋮ x n ] , x ′ = [ x 1 ′ x 2 ′ ⋮ x n ′ ] \boldsymbol{f}(t)=\left[\begin{array}{c} f_{1}(t) \\ f_{2}(t) \\ \vdots \\ f_{n}(t) \end{array}\right], \boldsymbol{x}=\left[\begin{array}{c} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{array}\right], \boldsymbol{x}^{\prime}=\left[\begin{array}{c} x_{1}^{\prime} \\ x_{2}^{\prime} \\ \vdots \\ x_{n}^{\prime} \end{array}\right] f(t)=f1(t)f2(t)fn(t),x=x1x2xn,x=x1x2xn
所以线性微分方程组就可以写成
x ′ = A ( t ) x + f ( t ) \boldsymbol x^{\prime}=\boldsymbol A(t) \boldsymbol x+\boldsymbol f(t) x=A(t)x+f(t)
f ( t ) \boldsymbol f(t) f(t)是零向量时,
x ′ = A ( t ) x \boldsymbol x^{\prime}=\boldsymbol A(t) \boldsymbol x x=A(t)x
叫做齐次线性微分方程组.

2. 线性微分方程组的一般理论

2.1朗斯基行列式

设有 n n n个向量函数
x 1 ( t ) = [ x 11 ( t ) x 21 ( t ) ⋮ x n 1 ( t ) ] , x 2 ( t ) = [ x 12 ( t ) x 22 ( t ) ⋮ x n 2 ( t ) ] , ⋯   , x n ( t ) = [ x 1 n ( t ) x 2 n ( t ) ⋮ x n n ( t ) ] \boldsymbol{x}_{1}(t)=\left[\begin{array}{c} x_{11}(t) \\ x_{21}(t) \\ \vdots \\ x_{n 1}(t) \end{array}\right], \boldsymbol{x}_{2}(t)=\left[\begin{array}{c} x_{12}(t) \\ x_{22}(t) \\ \vdots \\ x_{n 2}(t) \end{array}\right], \cdots, \boldsymbol{x}_{n}(t)=\left[\begin{array}{c} x_{1 n}(t) \\ x_{2 n}(t) \\ \vdots \\ x_{n n}(t) \end{array}\right] x1(t)=x11(t)x21(t)xn1(t),x2(t)=x12(t)x22(t)xn2(t),,xn(t)=x1n(t)x2n(t)xnn(t)
由着 n n n个向量构成的行列式
W [ x 1 ( t ) , x 2 ( t ) , ⋯   , x n ( t ) ] = W ( t ) = ∣ x 11 ( t ) x 12 ( t ) ⋯ x 1 n ( t ) x 21 ( t ) x 22 ( t ) ⋯ x 2 n ( t ) ⋮ ⋮ ⋮ x n 1 ( t ) x n 2 ( t ) ⋯ x n n ( t ) ∣ \begin{aligned} & W\left[\boldsymbol x_{1}(t),\boldsymbol x_{2}(t), \cdots,\boldsymbol x_{n}(t)\right] \\ =& W(t)=\left|\begin{array}{cccc} x_{11}(t) & x_{12}(t) & \cdots & x_{1 n}(t) \\ x_{21}(t) & x_{22}(t) & \cdots & x_{2 n}(t) \\ \vdots & \vdots & & \vdots \\ x_{n 1}(t) & x_{n 2}(t) & \cdots & x_{n n}(t) \end{array}\right| \end{aligned} =W[x1(t),x2(t),,xn(t)]W(t)=x11(t)x21(t)xn1(t)x12(t)x22(t)xn2(t)x1n(t)x2n(t)xnn(t)
称为这些向量函数的朗斯基行列式

定理:如果向量函数 x 1 ( t ) , x 2 ( t ) , ⋯   , x n ( t ) \boldsymbol x_{1}(t),\boldsymbol x_{2}(t), \cdots,\boldsymbol x_{n}(t) x1(t),x2(t),,xn(t)线性相关,则他们的朗斯基行列式恒为0

定理:如果向量函数 x 1 ( t ) , x 2 ( t ) , ⋯   , x n ( t ) \boldsymbol x_{1}(t),\boldsymbol x_{2}(t), \cdots,\boldsymbol x_{n}(t) x1(t),x2(t),,xn(t)是齐次线性微分方程组的解且线性无关,则他们的朗斯基恒不为0

2.2齐次线性微分方程组

基本解组和解矩阵、基解矩阵、标准基解矩阵、解矩阵

基本解组:线性无关的 n n n个齐次方程的解 x 1 ( t ) , x 2 ( t ) , ⋯   , x n ( t ) \boldsymbol x_{1}(t),\boldsymbol x_{2}(t), \cdots,\boldsymbol x_{n}(t) x1(t),x2(t),,xn(t)构成了齐次方程的基本解组

基解矩阵:将基本解组 x 1 ( t ) , x 2 ( t ) , ⋯   , x n ( t ) \boldsymbol x_{1}(t),\boldsymbol x_{2}(t), \cdots,\boldsymbol x_{n}(t) x1(t),x2(t),,xn(t)排在一个矩阵中,把这个矩阵 Φ ( t ) \Phi(t) Φ(t)叫做基解矩阵.
Φ ( t ) = [ x 11 ( t ) x 12 ( t ) ⋯ x 1 n ( t ) x 21 ( t ) x 22 ( t ) ⋯ x 2 n ( t ) ⋮ ⋮ ⋮ x n 1 ( t ) x n 2 ( t ) ⋯ x n n ( t ) ] \Phi(t)= \begin{bmatrix}{} x_{11}(t) & x_{12}(t) & \cdots & x_{1 n}(t) \\ x_{21}(t) & x_{22}(t) & \cdots & x_{2 n}(t) \\ \vdots & \vdots & & \vdots \\ x_{n 1}(t) & x_{n 2}(t) & \cdots & x_{n n}(t) \end{bmatrix} Φ(t)=x11(t)x21(t)xn1(t)x12(t)x22(t)xn2(t)x1n(t)x2n(t)xnn(t)
标准基解矩阵:如果基解矩阵有 Φ ( t 0 ) = E \Phi(t_0)=E Φ(t0)=E,则称这个基解矩阵为标准基解矩阵.

解矩阵:将任意齐次方程的解排列成矩阵,我们把这个矩阵叫做解矩阵.

验证一个矩阵是否为一个齐次线性方程基解矩阵的方法:先证明矩阵是解矩阵,即将矩阵代入到方程中,如果等号左右两边成立则该矩阵是解矩阵.在证明是基解矩阵,因为基解矩阵的每一列构成的向量是线性无关的,所以如果基解矩阵在定区间上行列式恒不为0则这个解矩阵是基解矩阵.

2.3非齐次线性微分方程组的常数变易公式

如果 Φ ( t ) \Phi(t) Φ(t)是非齐次微分方程组对应的齐次方程组的基解矩阵,则非齐次微分方程组对应的一个特解是
φ ( t ) = Φ ( t ) ∫ t 0 t Φ − 1 ( s ) f ( s ) d s \boldsymbol \varphi(t)=\boldsymbol \Phi(t)\int_{t_0}^t\boldsymbol \Phi^{-1}(s)\boldsymbol f(s)ds φ(t)=Φ(t)t0tΦ1(s)f(s)ds
且满足初始条件 φ ( t 0 ) = 0 \boldsymbol \varphi(t_0)=\boldsymbol0 φ(t0)=0

如果初始条件是 φ ( t 0 ) = η \boldsymbol\varphi(t_0)=\boldsymbol\eta φ(t0)=η,则方程的特解可以表示为
φ ( t ) = Φ ( t ) Φ − 1 ( t 0 ) η + Φ ( t ) ∫ t 0 t Φ − 1 ( s ) f ( s ) d s \boldsymbol{\varphi}(t)=\boldsymbol{\Phi}(t) \boldsymbol{\Phi}^{-1}\left(t_{0}\right) \boldsymbol{\eta}+\boldsymbol{\Phi}(t) \int_{t_{0}}^{t} \boldsymbol{\Phi}^{-1}(s) \boldsymbol{f}(s) \mathrm{d} s φ(t)=Φ(t)Φ1(t0)η+Φ(t)t0tΦ1(s)f(s)ds
上式称为非齐次线性微分方程组的常数变易公式

3. 常系数线性微分方程组

3.1 矩阵指数的定义和性质

矩阵指数的定义
e A t = I + A t + 1 2 ( A t ) 2 + 1 6 ( A t ) 3 + ⋯ e^{A t}=I+A t+\frac{1}{2}(A t)^{2}+\frac{1}{6}(A t)^{3}+\cdots eAt=I+At+21(At)2+61(At)3+
矩阵指数的性质

性质1 如果矩阵 A , B \boldsymbol A ,\boldsymbol B A,B是可交换的,即 A B = B A \boldsymbol A \boldsymbol B=\boldsymbol B\boldsymbol A AB=BA,则
exp ⁡ ( A + B ) = exp ⁡ ( A ) exp ⁡ ( B ) \exp(\boldsymbol A+\boldsymbol B)=\exp(\boldsymbol A)\exp(\boldsymbol B) exp(A+B)=exp(A)exp(B)
性质2 对于任何矩阵 A \boldsymbol A A ( exp ⁡ A ) − 1 (\exp A)^{-1} (expA)1存在,且
( exp ⁡ A ) − 1 = exp ⁡ ( − A ) (\exp \boldsymbol{A})^{-1}=\exp (-\boldsymbol{A}) (expA)1=exp(A)
性质3 如果 T \boldsymbol T T是非奇异矩阵,则
exp ⁡ ( T − 1 A T ) = T − 1 exp ⁡ ( A ) T . \exp(\boldsymbol T^{-1} \boldsymbol A \boldsymbol T)=\boldsymbol T^{-1} \exp(\boldsymbol A) \boldsymbol T. exp(T1AT)=T1exp(A)T.

3.2齐次线性方程组的基解矩阵

齐次线性方程组 x ′ = A x \boldsymbol x^\prime=\boldsymbol A \boldsymbol x x=Ax有标准基解矩阵
Φ ( t ) = exp ⁡ ( A t ) \Phi(t)=\exp(\boldsymbol At) Φ(t)=exp(At)

3.3基解矩阵的计算公式

如果 A A A有特征值 λ \lambda λ和特征向量 ξ \xi ξ,则 e λ t ξ e^{\lambda t} \xi eλtξ是常系数齐次线性方程组的一个解.

定理 如果矩阵 A \boldsymbol A A具有 n n n个线性无关的特征向量 v 1 , v 2 , ⋯   , v n \boldsymbol v_1,\boldsymbol v_2,\cdots,\boldsymbol v_n v1,v2,,vn,他们对应的特征值分别为 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn(不必各不相同)那么矩阵
Φ ( t ) = [ e λ 1 t v 1 , e λ 2 t v 2 , ⋯   , e λ n t v n ] \boldsymbol{\Phi}(t)=\left[\mathrm{e}^{\lambda_{1} t} \boldsymbol{v}_{1}, \mathrm{e}^{\lambda_{2} t} \boldsymbol{v}_{2}, \cdots, \mathrm{e}^{\lambda_{n}{ }^{t}} \boldsymbol{v}_{n}\right] Φ(t)=[eλ1tv1,eλ2tv2,,eλntvn]
就是常系数线性微分方程组的一个基解矩阵.

它和标准基解矩阵的关系为
exp ⁡ A t = Φ ( t ) Φ − 1 ( 0 ) \exp \boldsymbol{A} t=\boldsymbol{\Phi}(t) \boldsymbol{\Phi}^{-1}(0) expAt=Φ(t)Φ1(0)

  • 6
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值