可达性统计 bitset优化DP入门

可达性统计

题意:

给定一张 N 个点 M 条边的有向无环图,分别统计从每个点出发能够到达的点的数量。

1 ≤ N , M ≤ 30000 1≤N,M≤30000 1N,M30000

思路:

给定DAG图,多半是要topsort + dp。
可以通过建反图来得到当前点出发到达点的数量。
例如: u–> v, v能到达的点,那么u也能到达。u要对v能到达的点取并集。
假设不使用bitset,要二进制状压表示当前点能到达的点。当然数据范围用状压铁T,就算数据范围小点,状压不T,还要涉及到取 o r or or操纵,需要O(n)。
假设使用bitset,那么题目变得非常简单,且每次 o r or or操纵 O(n / 32)。
那么总的实际复杂度为O(n * n / 32)

code:

int h[maxn], ne[maxn], e[maxn], idx, in[maxn];
bitset <mx> f[mx];int N, M;
void add(int u, int v)
{
	e[idx] = v;
	ne[idx] = h[u];
	h[u] = idx ++;
} //含重边 非连通图 
void topsort()
{
	queue <int> alls;
	for(int i = 1 ; i <= N ; i ++)
	{
		if(in[i] == 0)
		alls.push(i), f[i][i] = 1;
	}
	while(!alls.empty())
	{
		int temp = alls.front();
		alls.pop();
		for(int i = h[temp] ; i != -1 ; i = ne[i])
		{
			int son = e[i];
			f[son][son] = 1;
			f[son] |= f[temp];
			in[son] --;
			if(in[son] == 0)
			alls.push(son);
		}
	}
}
int main() //建反边 bitset 
{
	
	scanf("%d %d", &N, &M);
	memset(h, -1, sizeof(h)), idx = 0;
	for(int i = 1 ; i <= M ; i ++)
	{
		int u, v;
		scanf("%d %d", &u, &v);
//		add(u, v);
		add(v, u);  
		in[u] ++;
	}
	topsort();
	for(int i = 1 ; i <= N ; i ++)
	printf("%d\n", f[i].count());
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值