一、区别
SVM
KNN
SVM:先在训练集上训练一个模型,然后用这个模型直接对测试集进行分类。
KNN:没有训练过程,只是将训练数据与训练数据进行距离度量来实现分类。
SVM:训练完直接得到超平面函数,根据超平面函数直接判定预测点的label,预测效率很高
KNN:预测过程需要挨个计算每个训练样本和测试样本的距离,当训练集和测试集很大时,预测效率低。
SVM:SVM是要去找一个函数把达到样本可分。
KNN:KNN对每个样本都要考虑。
SVM:SVM处理高纬度数据比较优秀
KNN:KNN不能处理样本维度太高的东西
二、SVM原理
支持向量积
支持向量
选出最好的决策边界
决策边界要大的,宽的道路行动更快
支持寻找向量
支持向量要小的,考虑自己最近的雷才最安全