SVM和KNN

本文对比了支持向量机(SVM)与K近邻(KNN)两种机器学习算法。SVM通过训练得到超平面进行高效分类,适合高维数据,而KNN依赖于所有训练样本进行距离计算,预测效率较低。SVM的目标是找到最佳决策边界,以最大化间隔。高斯核函数是SVM中常用的核函数,具有良好的局部性和抗噪能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、区别

SVM

 

KNN

SVM:先在训练集上训练一个模型,然后用这个模型直接对测试集进行分类。

KNN:没有训练过程,只是将训练数据与训练数据进行距离度量来实现分类。

SVM:训练完直接得到超平面函数,根据超平面函数直接判定预测点的label,预测效率很高

KNN:预测过程需要挨个计算每个训练样本和测试样本的距离,当训练集和测试集很大时,预测效率低。

SVM:SVM是要去找一个函数把达到样本可分。

KNN:KNN对每个样本都要考虑。

SVM:SVM处理高纬度数据比较优秀

KNN:KNN不能处理样本维度太高的东西

二、SVM原理

支持向量积

支持向量

选出最好的决策边界

决策边界要大的,宽的道路行动更快

支持寻找向量

支持向量要小的,考虑自己最近的雷才最安全

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值