USV状态空间模型

       通常,如果将无人水面艇视为刚体,动态模型可以分为两部分:运动学,处理运动的几何方面;动力学,分析导致运动的力。

      1. 运动学:相对于选定的坐标系(对于低速航行器,该坐标系通常是固定于地球的),海洋航行器在空间中会经历六自由度的运动。这些自由度在平移运动中被称为纵荡、横荡和垂荡,在旋转运动中被称为俯仰、横滚和偏航。对于水面航行器,特别是在处理执行器效应时,横滚、俯仰和垂荡的影响可以忽略不计,航行器模型可以简化为如图所示的仅具有三个自由度的平面运动。

运动学方程(速度到位置和姿态的变化)

1. 位置变化率(惯性坐标系):

\begin{aligned} \frac{dx}{dt} &= u \cos\psi - v \sin\psi , \\ \frac{dy}{dt} &= u \sin\psi + v \cos\psi . \\ \end{aligned}

2. 姿态角变化率:

\begin{aligned} \frac{d\psi}{dt} &= r. \end{aligned}

2.动力学:

       刚体在流体介质中的最终动力学方程为:

      其中,.

     从提供的MATLAB代码中,我们可以提取出自主水下航行器(AUV)的运动学方程和动力学方程如下:

动力学方程(力的平衡导致加速度)

1. Surge方向(纵向):
 

m_{1}\frac{\mathrm{du} }{\mathrm{d} t}=m_{2}vr-m_{3}wq-(X_{u}+X_{uu}|u|)u+F_{u}

2. Sway方向(横向):


m_{2}\frac{\mathrm{dv} }{\mathrm{d} t}=-m_{1}ur-(Y_{v}+Y_{vv}|v|)v

3. Yaw方向(偏航角加速度):


m_{5}\frac{\mathrm{dr} }{\mathrm{d} t}=(m_{1}-m_{2})uv-(N_{r}+N_{rr}|r|)r+\delta _{v}

参数说明:
( m_1, m_2, m_3, m_4, m_5 ): 包含质量和附加质量的惯性参数。
( X_u, Y_v, Z_w, M_q, N_r ): 线性阻尼系数。
( X_{uu}, Y_{vv}, Z_{ww}, M_{qq}, N_{rr} ): 非线性阻尼系数。
W: 重力,B: 浮力。
( z_g, z_b ): 重心和浮心的垂向位置。
F_u: 纵向推力,\delta _{h}: 水平舵角,\delta _v: 垂直舵角。

---

上述方程完整描述了AUV的动力学和运动学行为,可用于数值仿真(如代码中的龙格-库塔法)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值