蓝桥杯JavaB组 9.分巧克力

题目:
儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。
为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。切出的巧克力需要满足:

  1. 形状是正方形,边长是整数
  2. 大小相同

例如:一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?

输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000)
输入保证每位小朋友至少能获得一块1x1的巧克力。

输出
输出切出的正方形巧克力最大可能的边长。

样例输入:
2 10
6 5
5 6

样例输出:
2

运行限制:
最大运行时间:2s
最大运行内存: 256M

分析:

  1. N(巧克力块数),K(人数),Hi、Wi每一块巧克力的长宽
  2. 形状是正方形,边长是整数 len的长度对于长宽是固定的,直接长宽除以len相乘,则计算出一块巧克力的可切割数,只需要计算切割块数count >= K 时len的长度。所以考虑直接暴力嵌套两层循环,外层找len,内层计算N巧克力可切割块数count。
  3. 当然直接暴力,时间复杂度O(N^2),对于本题最坏100000 * 100000 的数据量来说,显然有的测试用例是会超时的。考虑暴力 + 二分改进算法。
  4. 暴力 + 二分的考虑:
    • 因为所有小朋友们都希望得到的巧克力尽可能大 暴力中我们的len是从100000最大边长,进行len- -的循环寻找,显然有的计算是没有必要的,且我们只需要找len即可。故思考用二分,len直接取mid开始找,当count < K 则二分的left向右移动增加mid。
    • 二分:核心在于对于边界值判定,可以有两种边界[left, right][left, right) ,两种写法有细微差别对应不同的判断语句,此处以[left, right] 为边界。

代码:

	//直接暴力
	static int n,k;
	static int h[] = new int[100000];
	static int w[] = new int[100000];
	public static void main(String[] args) {
		int len = 100000;
		int count = 0;
		Scanner scanner = new Scanner(System.in);
		n = scanner.nextInt();
		k = scanner.nextInt();
		for (int i = 0; i < n; i++) {
			h[i] = scanner.nextInt();
			w[i] = scanner.nextInt();
		}
		//枚举
		for(; len > 1; len--) {
			for(int i = 0; i < n;i++) {
				count += (h[i]/len) * (w[i]/len);
			}
			if (count >= k) {
				break;
			}
		}
		System.out.println(len);
	}
	static int n,k;
	static int h[] = new int[100000];
	static int w[] = new int[100000];
	public static void main(String[] args) {
		int result = 0;
		int left = 0;
		int right = 100001;
		int count = 0;
		
		Scanner scanner = new Scanner(System.in);
		n = scanner.nextInt();
		k = scanner.nextInt();
		for (int i = 0; i < n; i++) {
			h[i] = scanner.nextInt();
			w[i] = scanner.nextInt();
		}
		while (left <= right) {
			int mid = (left + right)/2;
			for (int i = 0; i < n; i++) {
				count += (h[i]/mid) * (w[i]/mid);
			}
			if (count >= k) {
				left = mid + 1;
				result = mid;
				break;
			} else {
				right = mid - 1;
			}
		}
		System.out.println(result);
	}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值