题目:
儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。
为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。切出的巧克力需要满足:
- 形状是正方形,边长是整数
- 大小相同
例如:一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?
输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000)
输入保证每位小朋友至少能获得一块1x1的巧克力。
输出
输出切出的正方形巧克力最大可能的边长。
样例输入:
2 10
6 5
5 6
样例输出:
2
运行限制:
最大运行时间:2s
最大运行内存: 256M
分析:
- N(巧克力块数),K(人数),Hi、Wi每一块巧克力的长宽
形状是正方形,边长是整数
len的长度对于长宽是固定的,直接长宽除以len相乘,则计算出一块巧克力的可切割数,只需要计算切割块数count >= K
时len的长度。所以考虑直接暴力嵌套两层循环
,外层找len,内层计算N巧克力可切割块数count。- 当然直接暴力,时间复杂度
O(N^2)
,对于本题最坏100000 * 100000 的数据量来说,显然有的测试用例是会超时的。考虑暴力 + 二分改进算法。 - 暴力 + 二分的考虑:
- 因为所有
小朋友们都希望得到的巧克力尽可能大
暴力中我们的len是从100000最大边长,进行len- -的循环寻找,显然有的计算是没有必要的,且我们只需要找len即可。故思考用二分,len直接取mid开始找,当count < K
则二分的left向右移动增加mid。 - 二分:核心在于对于边界值判定,可以有两种边界
[left, right]
、[left, right)
,两种写法有细微差别对应不同的判断语句,此处以[left, right]
为边界。
- 因为所有
代码:
//直接暴力
static int n,k;
static int h[] = new int[100000];
static int w[] = new int[100000];
public static void main(String[] args) {
int len = 100000;
int count = 0;
Scanner scanner = new Scanner(System.in);
n = scanner.nextInt();
k = scanner.nextInt();
for (int i = 0; i < n; i++) {
h[i] = scanner.nextInt();
w[i] = scanner.nextInt();
}
//枚举
for(; len > 1; len--) {
for(int i = 0; i < n;i++) {
count += (h[i]/len) * (w[i]/len);
}
if (count >= k) {
break;
}
}
System.out.println(len);
}
static int n,k;
static int h[] = new int[100000];
static int w[] = new int[100000];
public static void main(String[] args) {
int result = 0;
int left = 0;
int right = 100001;
int count = 0;
Scanner scanner = new Scanner(System.in);
n = scanner.nextInt();
k = scanner.nextInt();
for (int i = 0; i < n; i++) {
h[i] = scanner.nextInt();
w[i] = scanner.nextInt();
}
while (left <= right) {
int mid = (left + right)/2;
for (int i = 0; i < n; i++) {
count += (h[i]/mid) * (w[i]/mid);
}
if (count >= k) {
left = mid + 1;
result = mid;
break;
} else {
right = mid - 1;
}
}
System.out.println(result);
}