PSO——粒子群优化算法

目录

1.PSO算法的基本原理

2.PSO代码实现(Python)

  代码说明

  参数调整


        粒子群优化(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,灵感来自鸟群或鱼群的觅食行为。PSO通过在多维搜索空间中移动一组“粒子”(代表潜在解)来找到最优解。每个粒子都有自己的位置和速度,逐步向最佳解靠近。PSO算法常用于求解复杂的优化问题,具有全局搜索能力和计算效率较高的特点。


1.PSO算法的基本原理

  1. 粒子表示:每个粒子表示一个潜在解,在D维空间中定义其位置 \mathbf{x}_i​ 和速度 \mathbf{v}_i

  2. 初始化:粒子的位置和速度在搜索空间中随机初始化。

  3. 适应度评估:通过目标函数评估每个粒子的适应度(即目标函数值)。

  4. 个体最优和全局最优

    • 个体最优(pBest):每个粒子记录自己目前遇到的最佳位置。
    • 全局最优(gBest):所有粒子中适应度值最优的粒子位置。
  5. 速度和位置更新:根据公式更新粒子速度和位置,使粒子逐渐靠近最优解。  

    其中:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值