目录
粒子群优化(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,灵感来自鸟群或鱼群的觅食行为。PSO通过在多维搜索空间中移动一组“粒子”(代表潜在解)来找到最优解。每个粒子都有自己的位置和速度,逐步向最佳解靠近。PSO算法常用于求解复杂的优化问题,具有全局搜索能力和计算效率较高的特点。
1.PSO算法的基本原理
-
粒子表示:每个粒子表示一个潜在解,在D维空间中定义其位置
和速度
。
-
初始化:粒子的位置和速度在搜索空间中随机初始化。
-
适应度评估:通过目标函数评估每个粒子的适应度(即目标函数值)。
-
个体最优和全局最优:
- 个体最优(pBest):每个粒子记录自己目前遇到的最佳位置。
- 全局最优(gBest):所有粒子中适应度值最优的粒子位置。
-
速度和位置更新:根据公式更新粒子速度和位置,使粒子逐渐靠近最优解。
其中: