目录
2. 多头注意力(Multi-Head Attention)
七、PyTorch 实现 Transformer 的简单示例
Transformer 是近年来深度学习领域最具影响力的模型架构之一。自从 2017 年 Vaswani 等人提出 "Attention is All You Need" 论文以来,Transformer 已成为自然语言处理(NLP)、计算机视觉(CV)等领域的核心技术。本文将全面解析 Transformer 的基本原理、结构、关键技术及其应用。
一、什么是 Transformer?
Transformer 是一种基于"注意力机制(Attention Mechanism)"的神经网络架构,主要用于处理序列数据。与传统的循环神经网络(RNN)不同,Transformer 通过并行计算和全局注意力机制,极大提升了模型的效率和性能。
二、Transformer 的结构解析
Transformer 的架构包括两个主要部分:编码器(Encoder)和解码器(Decoder)。一个完整的 Transformer 包括堆叠的多个编码器和解码器。
1. 编码器(Encoder)
编码器的主要任务是对输入序列进行编码,生成上下文相关的隐藏表示。每个编码器模块包括以下部分:
-
多头注意力机制(Multi-Head Attention)
计算序列中每个位置与其他位置之间的依赖关系。 -
前馈神经网络(Feed-Forward Network, FFN)
对每个位置的隐藏表示进行非线性变换。 -
残差连接(Residual Connection)和层归一化(Layer Normalization)
稳定训练并加速收敛。
2. 解码器(Decoder)
解码器的任务是根据编码器生成的隐藏表示和解码器的先前输出,生成目标序列。每个解码器模块的结构与编码器类似,但增加了一个"掩码多头注意力(Masked Multi-Head Attention)"层,用于保证自回归生成的顺序性。
3. Transformer 模型结构图
以下是 Transformer 的整体结构:
输入序列 → [编码器 × N] → 隐藏表示 → [解码器 × N] → 输出序列
三、核心技术:注意力机制与多头注意力
1. 注意力机制
注意力机制的核心思想是:为输入序列中的每个元素分配一个与其他元素相关的权重,以捕获其全局依赖关系。
公式为: