全面解析 Transformer:改变深度学习格局的神经网络架构

目录

一、什么是 Transformer?

二、Transformer 的结构解析

  1. 编码器(Encoder)

  2. 解码器(Decoder)

  3. Transformer 模型结构图

三、核心技术:注意力机制与多头注意力

  1. 注意力机制

  2. 多头注意力(Multi-Head Attention)

四、位置编码(Positional Encoding)

五、Transformer 的优势

六、Transformer 的应用

  1. 自然语言处理(NLP)

  2. 计算机视觉(CV)

  3. 多模态学习

七、PyTorch 实现 Transformer 的简单示例

八、总结


        Transformer 是近年来深度学习领域最具影响力的模型架构之一。自从 2017 年 Vaswani 等人提出 "Attention is All You Need" 论文以来,Transformer 已成为自然语言处理(NLP)、计算机视觉(CV)等领域的核心技术。本文将全面解析 Transformer 的基本原理、结构、关键技术及其应用。


一、什么是 Transformer?

        Transformer 是一种基于"注意力机制(Attention Mechanism)"的神经网络架构,主要用于处理序列数据。与传统的循环神经网络(RNN)不同,Transformer 通过并行计算和全局注意力机制,极大提升了模型的效率和性能。


二、Transformer 的结构解析

        Transformer 的架构包括两个主要部分:编码器(Encoder)解码器(Decoder)。一个完整的 Transformer 包括堆叠的多个编码器和解码器。

  1. 编码器(Encoder)

        编码器的主要任务是对输入序列进行编码,生成上下文相关的隐藏表示。每个编码器模块包括以下部分:

  • 多头注意力机制(Multi-Head Attention)
    计算序列中每个位置与其他位置之间的依赖关系。

  • 前馈神经网络(Feed-Forward Network, FFN)
    对每个位置的隐藏表示进行非线性变换。

  • 残差连接(Residual Connection)和层归一化(Layer Normalization)
    稳定训练并加速收敛。

  2. 解码器(Decoder)

        解码器的任务是根据编码器生成的隐藏表示和解码器的先前输出,生成目标序列。每个解码器模块的结构与编码器类似,但增加了一个"掩码多头注意力(Masked Multi-Head Attention)"层,用于保证自回归生成的顺序性。

  3. Transformer 模型结构图

        以下是 Transformer 的整体结构:

输入序列 → [编码器 × N] → 隐藏表示 → [解码器 × N] → 输出序列

三、核心技术:注意力机制与多头注意力

  1. 注意力机制

        注意力机制的核心思想是:为输入序列中的每个元素分配一个与其他元素相关的权重,以捕获其全局依赖关系。

        公式为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值