Python机器学习——2

本文介绍了如何使用pandas库创建Series和DataFrame,涉及数组创建、自定义索引、字典和range生成索引、追加与删除元素,以及DataFrame的构建方法和切片操作。重点展示了数据结构的灵活运用和基本操作技巧。
摘要由CSDN通过智能技术生成

数组创建:

import pandas as pd
import numpy as np
#前一个是数据,后一个列表是自定义的下标
s = pd.Series([1,3,5,9,5,7],[2,3,4,65,6,2])
print(s,'\n')
s += 1   
print(s,'\n')

#使用字典创建,索引值为字典的key值,qwe为数组元素下标
s2 = pd.Series({'longitude':39,'qwe':23,"asdf":54})
print(s2['qwe'])

#使用由range()函数生成的迭代序列设置索引值
s3 = pd.Series([3.4,0.8,2.1,0.3,1.5],range(5,10))
print(s3[5])

#追加数组
s4 = s3.append(s2)
print(s4)

#删除元素
s5 = s4.drop('qwe')
print(s5)

DataFrame数据结构构建数组:

import pandas as pd
import numpy as np
#DataFrame数据结构,以表格形式表示数组元素,包括列索引对于表格的字段名(元素下标)(不设置则默认0,1,2),行索引对应表格的行号(不设置则默认0,1,2)
#列索引为下标,列索引下面的就是列索引对于的元素。
dict1 = {'col1':[1,23,3,4],'co12':[2,3,4,6]}
#索引为col1,对应的元素为[1,23,3,4]一个个顺序列出
df = pd.DataFrame(dict1)
print(df)
df = pd.DataFrame([1,2,3])
print(df)
df = pd.DataFrame(([1,2,3]),[4,5,6])
print(df)
df = pd.DataFrame((([1,2,3]),[4,5,6]),columns = ['t1','t2','t3'])
#1,4下标为t1。2,5下标为t2。3,6下标为t3
print(df)
a = np.array([[1,2,3],[3,4,5]])
df = pd.DataFrame(a,columns=['t1','t2','t3'])
print(df)

数组切片:

#columns代表列标,index代表行标
dq = pd.DataFrame(np.arange(12).reshape(4,3),columns=['t1','t2','t3'],index = ['a','b','c','d'])
print(dq)
print(dq['t1'])
print(dq['t1']['a'])
print(dq['t1'][['a','c']])
print(dq[['t1','t3']])
#切片,按行切片
print(dq[0:2][['t1','t3']])
#通过dq['t1']>5返回值是False或者True,筛选出True的行,然后将可选行的所有值按表格输出
print(dq[dq['t1']>5])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值