数组创建:
import pandas as pd
import numpy as np
#前一个是数据,后一个列表是自定义的下标
s = pd.Series([1,3,5,9,5,7],[2,3,4,65,6,2])
print(s,'\n')
s += 1
print(s,'\n')
#使用字典创建,索引值为字典的key值,qwe为数组元素下标
s2 = pd.Series({'longitude':39,'qwe':23,"asdf":54})
print(s2['qwe'])
#使用由range()函数生成的迭代序列设置索引值
s3 = pd.Series([3.4,0.8,2.1,0.3,1.5],range(5,10))
print(s3[5])
#追加数组
s4 = s3.append(s2)
print(s4)
#删除元素
s5 = s4.drop('qwe')
print(s5)
DataFrame数据结构构建数组:
import pandas as pd
import numpy as np
#DataFrame数据结构,以表格形式表示数组元素,包括列索引对于表格的字段名(元素下标)(不设置则默认0,1,2),行索引对应表格的行号(不设置则默认0,1,2)
#列索引为下标,列索引下面的就是列索引对于的元素。
dict1 = {'col1':[1,23,3,4],'co12':[2,3,4,6]}
#索引为col1,对应的元素为[1,23,3,4]一个个顺序列出
df = pd.DataFrame(dict1)
print(df)
df = pd.DataFrame([1,2,3])
print(df)
df = pd.DataFrame(([1,2,3]),[4,5,6])
print(df)
df = pd.DataFrame((([1,2,3]),[4,5,6]),columns = ['t1','t2','t3'])
#1,4下标为t1。2,5下标为t2。3,6下标为t3
print(df)
a = np.array([[1,2,3],[3,4,5]])
df = pd.DataFrame(a,columns=['t1','t2','t3'])
print(df)
数组切片:
#columns代表列标,index代表行标
dq = pd.DataFrame(np.arange(12).reshape(4,3),columns=['t1','t2','t3'],index = ['a','b','c','d'])
print(dq)
print(dq['t1'])
print(dq['t1']['a'])
print(dq['t1'][['a','c']])
print(dq[['t1','t3']])
#切片,按行切片
print(dq[0:2][['t1','t3']])
#通过dq['t1']>5返回值是False或者True,筛选出True的行,然后将可选行的所有值按表格输出
print(dq[dq['t1']>5])