力扣:322. 零钱兑换

力扣:322. 零钱兑换
题目:
给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。
你可以认为每种硬币的数量是无限的。

dp【j】的含义:
dp[j]:凑足总额为j所需钱币的最少个数为dp[j]

递推公式:
dp[j] = min(dp[j - coins[i]] + 1, dp[j]);

初始化:
dp【0】为0的原因:amount是可以等于0的,同时按道理来讲很明显dp【0】 = 0
因为dp[j]选择的是二者中较小的那一个 = min(dp[j], dp[j-coins[i]]+1);所以下标非0的元素都是应该是最大值。

遍历顺序:
此题是完全背包类型,所以从小到大来 遍历,同时所求的是最少的硬币个数并没有涉及到序列,所以本题的两个for循环的嵌套无要求,谁先谁后都行。

递归函数前设置判断条件的原因:
因为dp[j] = min(dp[j], dp[j-coins[i]]+1);这个操作假如dp[j - coins[i]] == INT_MAX那么dp[j-coins[i]]+1就越界了,所以要设置一个判断条件。

代码:

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        vector<int>dp(amount+1,INT_MAX);
        dp[0] = 0;
        for(int i = 0; i < coins.size();  ++i){
            for(int j = coins[i]; j <= amount; ++j){
                 if (dp[j - coins[i]] != INT_MAX) dp[j] = min(dp[j], dp[j-coins[i]]+1);
            }
        }
        if(dp[amount] == INT_MAX) return -1;
        return dp[amount];
    }
};
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值