多重背包概念:
每件物品有价值、重量、数量,从中选取物品放入背包中使得价值最大
多重背包和01背包是非常像的:
对于多重背包每件物品最多有Mi件可用,把Mi件摊开,其实就是一个01背包问题了。
这种方式来实现多重背包的代码如下:
void test_multi_pack() {
vector<int> weight = {1, 3, 4};
vector<int> value = {15, 20, 30};
vector<int> nums = {2, 3, 2};
int bagWeight = 10;
//通过将重复的物品放入数组中,来实现将多重背包转换成01背包
for (int i = 0; i < nums.size(); i++) {
while (nums[i] > 1) { // nums[i]保留到1,把其他物品都展开
weight.push_back(weight[i]);
value.push_back(value[i]);
nums[i]--;
}
}
//01背包问题求解
vector<int> dp(bagWeight + 1, 0);
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
for (int j = 0; j <= bagWeight; j++) {
cout << dp[j] << " ";
}
cout << endl;
}
cout << dp[bagWeight] << endl;
}
int main() {
test_multi_pack();
}
另一种实现方式即把每种商品遍历的个数放在01背包里面再遍历一遍:遍历出使用0~n个当前物品的情况
解析:
在双层for内添加一个for来选择你添加的物品个数。
dp【j】的实现:
dp【j】最终值的得到是依次遍历出所有情况(双层for来实现),然后选择更大的值,最后dp【j】代表的就是最大值。
使用第三个for的解释:
因此我们使用双层for遍历出所有情况即可。假设当前物品有n个,那么当前物品的所有情况就是,不选择当前物品,选择1个当前物品,选择2个当前物品…选择n个当前物品。第三个for就是选择0~n个当前物品,虽然k从1开始,但是原先的dp【j】就代表0,所以是选择0 ~n个当前物品的情况
此代码即
- 将1个当前物品放入背包中实现的最大价值,和不将1个当前物品放入背包中实现的最大价值。这两种方式取max。
- 将2个当前物品放入背包中实现的最大价值,和不将2个当前物品放入背包中实现的最大价值。这两种方式取max。
- …
- 将n个当前物品放入背包中实现的最大价值,和不将n个当前物品放入背包中实现的最大价值。这两种方式取max。
void test_multi_pack() {
vector<int> weight = {1, 3, 4};
vector<int> value = {15, 20, 30};
vector<int> nums = {2, 3, 2};
int bagWeight = 10;
vector<int> dp(bagWeight + 1, 0);
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
// 以上为01背包,然后加一个遍历个数
for (int k = 1; k <= nums[i] && (j - k * weight[i]) >= 0; k++) { // 遍历个数
dp[j] = max(dp[j], dp[j - k * weight[i]] + k * value[i]);
}
}
// 打印一下dp数组
for (int j = 0; j <= bagWeight; j++) {
cout << dp[j] << " ";
}
cout << endl;
}
cout << dp[bagWeight] << endl;
}
int main() {
test_multi_pack();
}