2024深度学习发论文&模型涨点之——迁移学习+多模态
迁移学习是指将一个领域或任务中获得的知识应用到另一个相关领域或任务中的方法。其主要优势在于可以减少对大量训练数据的需求,并提高模型在新任务上的性能。多模态学习是指在不同类型的数据(如图像、文本、音频等)之间共享知识的过程。其目标是学习一个通用的表示空间,使得不同类型的数据在这个空间中具有相似的结构。
迁移学习+多模态学习,可以在不同模态之间实现更有效的知识传递和信息融合,从而提高模型在新任务上的准确率。未来,迁移学习和多模态学习的结合将继续在各个领域中发挥重要作用,特别是在需要处理多种数据类型和跨领域知识迁移的复杂任务中。研究者们将继续探索如何更好地融合不同模态的数据,提高模型的泛化能力和性能。
如果有同学想发表相关论文,小编整理了一些迁移学习+多模态【论文】合集,以下放出部分,全部论文PDF版
需要的同学公众号【AI智界先锋】回复“迁移学习+多模态”即可全部领取
论文精选
论文1:
Audio-visual cross-modality knowledge transfer for machine learning-based in-situ monitoring in laser additive manufacturing
用于激光增材制造中基于机器学习的原位监测的视听跨模态知识转移