数学基础(二)质数的理论,判定,筛选,分解及例题

(一)定理
1.算数基本定理:
任何大于 1 的正整数都能唯一分解为有限个质数的乘积,可写作:
N=(p1^c1) * (p2^c2) * (p3^c3) … (pn^cm);
其中 ci 都是正整数,pi 都是质数且满足 p1<p2<p3<…<pn;
2.质数分布定理
对正实数x,定义π(x)为不大于x的素数个数,则有:π(x) 近似为 x / ln(x);
由质数定理可以给出第 n 个质数 p(n) 的渐近估计 : n * ln(n);
(二) 质数的判定
试除法:

bool is_prime()
{
	for(int i=2;i<=sqrt(n);i++)
		if(n%i==0) return false;
	return true;
}

(三)质数的筛选
Eratosthenes筛选法

void primes(int n)
{
	mesmet(v,0,sizeof(v));
	for(int i=2;i<=n;i++){
		if(v[i]) continue;
		cout<<i<<endl;
		for(int j=i;j<=n/i;j++)
			v[i*j]=1;
	}
}

线性筛法

int v[MAX_N],prime[MAX_N];
void primes(int n)
{
	mesmet(v,0,sizeof(v));//最小质因数 
	m=0;//质数数量 
	for(int i=2;i<=n;i++){
		if(v[i]==0){
			v[i]=i;
			prime[++m]=i;
		}
		for(int j=1;j<=m;j++){
			if(prime[j]>v[i]||prime[j]>n/i) break;
			v[i*prime[j]]=prime[j];
		}
	}
	for(int i=1;i<=m;i++)
		cout<<prime[j]<<endl;
}

(四)质因数分解
算数基本定理

void divide(int n) {
	m=0;
	for(int i=2; i<=n; i++) {
		if(n%i==0) {
			p[++m]=i;
			c[m]=0;
			where(n%i==0) {
				n/=i;
				c[m]++;
			}
		}
	}
	if(n>1)
		p[++m] =n,c[m]=1;
	for(int i=1; i<=m; i++)
		cout<<p[i]<<'^'<<c[i]<<endl;
}

(五) 例题
Prime Distance
质因数分解

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值