acm数学(2)质数

定义

如果一个大于一的整数p仅有正因子1和p,那么称p为质数。大于1且不是质数的数称为合数(1既不是质数也不是合数)

几个关于质数的基本定理

1.任何一个大于1的正整数都可以唯一分解为有限个质数的乘积

写作: N = p 1 c 1 p 2 c 2 ⋅ ⋅ ⋅ p m c m N = p_1^{c1}p_2^{c2}···p_m^{cm} N=p1c1p2c2pmcm,其中 p i p_i pi是质数, c i c_i ci为因子中 p i p_i pi出现的次数
2.分布
对于一个数x,不大于x的质数的数量 ≈ x ln ⁡ x \approx \frac{x}{\ln{x}} lnxx
则第n个质数的位置逼近于 n log ⁡ n n\log{n} nlogn

判定质数

1.朴素写法

bool is_Prime(int n){
	for(int i = 2; i <= sqrt(n); i++){
		if(n % i == 0) return false;
	}
	return true;
}

2.素数筛
①朴素筛法:埃氏筛(the Sieve of Eratosthenes,埃拉托色尼筛),复杂度 n log ⁡ log ⁡ n n\log{\log{n}} nloglogn
基本思想:
一个质数的倍数一定是合数而不是倍数
实现过程:
先把2 - n的数列出来
从小到大枚举数列中的质数(即未被标记为合数的数),再把质数的倍数标记为合数
如:
2   3   4   5   6   7   8   9   10   11   12   13 , ⋅ ⋅ ⋅ 2\ 3 \ 4 \ 5 \ 6 \ 7 \ 8\ 9 \ 10\ 11 \ 12 \ 13 ,··· 2 3 4 5 6 7 8 9 10 11 12 13,
先枚举2,把2的倍数标记为合数
2   3   4   5   6   7   8   9   10   11   12   13 , ⋅ ⋅ ⋅ \blue2\ 3 \ \red4 \ 5 \ \red6 \ 7 \ \red8\ 9 \ \red{10}\ 11 \ \red{12} \ 13 ,··· 2 3 4 5 6 7 8 9 10 11 12 13,

下一步枚举3,把3的倍数标记为合数
2   3   4   5   6   7   8   9   10   11   12   13 , ⋅ ⋅ ⋅ 2\ \blue3 \ \red4 \ 5 \ \red6 \ 7 \ \red8\ \red9 \ \red{10}\ 11 \ \red{12} \ 13 ,··· 2 3 4 5 6 7 8 9 10 11 12 13,
下一步枚举5,把5的倍数标记为合数
2   3   4   5   6   7   8   9   10   11   12   13 , ⋅ ⋅ ⋅ 2\ 3 \ \red4 \ \blue5 \ \red6 \ 7 \ \red8\ \red9 \ \red{10}\ 11 \ \red{12} \ 13 ,··· 2 3 4 5 6 7 8 9 10 11 12 13,
之后以此类推
代码:

int v[N], p[N], cnt = 0//合数数组 质数数组 质数个数
void getprimes(int n){
	for(int i = 2; i <= n; i++){
		if(v[i]) continue;
		p[++cnt] = i;
		for(int j = 1; i * j <= n; j++) v[i * j] = 1; 
	} 
}

实际上还是可以再优化的,因为我们很容易发现,一个数一定是被小于等于它的完全平方数的数筛掉的,所以初始的j我们可以改成i。

int v[N], p[N], cnt = 0//合数数组 质数数组 质数个数
void getprimes(int n){
	for(int i = 2; i <= n; i++){
		if(v[i]) continue;
		p[++cnt] = i;
		for(int j = i; i * j <= n; j++) v[i * j] = 1; 
		//把int j = 1改为int j = i
	} 
}

因为我们
②线性筛法:欧拉筛
我们会发现,埃氏筛有个小问题,那就是一个合数可能被多个质数标记,比如6可以被2也可以被3标记,30可以被2、3、5标记。重复标记造成了一定程度上的冗余,复杂度会达到 n log ⁡ log ⁡ n n\log{\log{n}} nloglogn
于是引入欧拉筛,欧拉筛的复杂度为O(n)
基本思想:
每一个质数只被它最小的质因数筛到
实现方法:
先把2 - n的数列出来
我们多维护一个质数表,每次取数列中的数,如果未被标记为合数则把它放入质数表,无论这个数是否为质数,都用它乘上质数表里的数,并标记乘得的数为合数,值得注意的一点是,对于x,当枚举到质数表里面的数p时,如果x可以被p整除(p|x)就停止遍历质数表。

只看文字肯定听不懂,下面来演示一下;
对于数列

2   3   4   5   6   7   8   9   10   11   12   13 , ⋅ ⋅ ⋅ 2\ 3 \ 4 \ 5 \ 6 \ 7 \ 8\ 9 \ 10\ 11 \ 12 \ 13 ,··· 2 3 4 5 6 7 8 9 10 11 12 13,

先枚举2,未被标记是质数把,它放入质数表primes,此时表为{2},之后用2乘质数表内的数2,得到4,标记4,因为2可以整除2,停止遍历,开始枚举下一个数字3。
2   3   4   5   6   7   8   9   10   11   12   13 , ⋅ ⋅ ⋅ p r i m e s { 2 } \blue2\ 3 \ \red4 \ 5 \ 6 \ 7 \ 8\ 9 \ 10\ 11 \ 12 \ 13 ,···\\ primes\{2\} 2 3 4 5 6 7 8 9 10 11 12 13,primes{2}

枚举3,是质数,放入质数表,用3依次乘质数表中的数,把6,9标记,因为3可以整除3,停止遍历,开始枚举下个数字4。
2   3   4   5   6   7   8   9   10   11   12   13 , ⋅ ⋅ ⋅ p r i m e s { 2 , 3 } 2\ \blue3 \ \red4 \ 5 \ \red6 \ 7 \ 8\ \red9 \ 10\ 11 \ 12 \ 13 ,···\\ primes\{2,3\} 2 3 4 5 6 7 8 9 10 11 12 13,primes{23}

枚举4,不是质数,不放进质数表,用4依次乘质数表中的数,乘2后得8把8标记,但2可以4整除,停止遍历,枚举下个数字5.
2   3   4   5   6   7   8   9   10   11   12   13 , ⋅ ⋅ ⋅ p r i m e s { 2 , 3 } 2\ 3 \ \red4 \ 5 \ \red6 \ 7 \ \red8\ \red9 \ 10\ 11 \ 12 \ 13 ,···\\ primes\{2,3\} 2 3 4 5 6 7 8 9 10 11 12 13,primes{23}
这里考虑一下为什么要停下来呢,如果继续枚举,4*3 = 12但是12的最小质因子是2,应该由6 * 2得到。下面我们可以来简单证明一下:
x = p ⋅ k x=p·k x=pk,p是x的最小质因子,k是正整数,那么对于 p ′ > p p'>p p>p,有 p ′ x = p ′ p k p'x=p'pk px=ppk,显然最小质因子不是 p ′ p' p而是 p p p。说人话就是比如 12 = 2 ∗ 6 = 3 ∗ 4 12 = 2 *6=3*4 12=26=34但是4可以拆出一个比3小的质数,那么12的最小质因数肯定就不是3。

之后的过程以此类推,最终可以得到
2   3   4   5   6   7   8   9   10   11   12   13 , ⋅ ⋅ ⋅ p r i m e s { 2 , 3 , 5 , 7 , 11 , 13 } 2\ 3 \ \red4 \ 5 \ \red6 \ 7 \ \red8\ \red9 \ \red{10}\ 11 \ \red{12} \ 13 ,···\\ primes\{2,3,5,7,11,13\} 2 3 4 5 6 7 8 9 10 11 12 13,primes{23571113}
我们还可以以此得到每个合数的最小质因数,代码如下

int v[MAXN];
vector<int> primes; // 质数表
void getprimes(int n){
    for (int i = 2; i <= n; i++){
        if (!v[i]) primes.push_back(i);
        for (int p : primes){
            if (p * i > n) break;
            v[p * i] = p;//p是p*i的最小质因子
            if (i % p == 0) break;
        }
    }
}

分解质因数

上面说过任何一个大于1的正整数都可以唯一分解为有限个质数的乘积

写作: N = p 1 c 1 p 2 c 2 ⋅ ⋅ ⋅ p m c m N = p_1^{c1}p_2^{c2}···p_m^{cm} N=p1c1p2c2pmcm,其中 p i p_i pi是质数, c i c_i ci为因子中 p i p_i pi出现的次数
下面就来分解质因数
基本思想:试除法,和前面的筛法有点共同之处,从 2 − n 2-\sqrt{n} 2n 依次枚举数x,如果可以被n整除,则把该因子从n去除,并统计去除的x的个数。由上面质数筛的思想,如果x是合数,则n一定不可能被分解,因为n中x的最小质因数已经被去除了。下面上代码:

int m, cnt[N], p[N];
void divide(int n){
	m = 0;
    for (int i = 2; i * i <= n; i++){
        if (n % i == 0){
            p[++m] = i;
            while (n % i == 0){
                n /= i;
                cnt[m]++;
            }
        }
    }
    if(n > 1) p[1] = n;c[m] = 1;//n是质数,质因子只有自己
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值