在anaconda下安装pytorch + python3.8+对应的torchvision -GPU版本

1.安装conda

2.使用清华镜像源网站

如果切换镜像后当出现下载不了的情况,就先切换默认源,然后再修改另一个可以使用的conda源(一定要先恢复默认,再换另一个!!!)

切换回默认源

conda config --remove-key channels

再切换到国内的镜像源(不然下载速度可能太慢)
分别输入以下4行代码:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/

3.创建Pytorch环境

conda create -n py38 python=3.8

4 激活虚拟环境

activate py38

5. 安装pytorch

5.1 查看cuda版本

nvcc --version

输出

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2019 NVIDIA Corporation
Built on Wed_Oct_23_19:32:27_Pacific_Daylight_Time_2019
Cuda compilation tools, release 10.2, V10.2.89

表明版本10.2

或者

nvidia-smi显示的CUDA版本实际上是驱动程序支持的最高CUDA版本。

5.2 查找对应版本的pytorch

Pytorch官网:PyTorch

复制粘贴到conda中

5.3 时间问题的话 可以先下载到本地

torch对用版本安装包链接:https://download.pytorch.org/whl/torch_stable.html

cuda版本10.2 选择cu102  选择torch1.8.0 选择cp38(因为python是3.8的) 选择win_amd64

下载后进入文件夹 使用pip本地安装

 pip install <下载的包的名字,要加后缀>

6.验证

6.1 conda中

python
import torch
print(torch.cuda.is_available())

输出true成功

6.2pycharm中

7. 安装torchvision

7.1 确定cuda、torch的版本

nvcc --version

显示cuda版本是10.2的

python
import torch
print(torch.__version__)

输出如下:

torch版本1.8.0

7.2 查找对应版本的torchvisio

我这里需要0.9的

7.3 将torchvision下载到本地

地址:download.pytorch.org/whl/torch_stable.html

我需要下载cuda10.2 torch1.8.0 torchvision0.9的

选择cu102 torchvision 0.9.0 cp38(因为python3.8)  windows amd64的

7.4 安装

打开anaconda 进入到安装包所在的文件地址

pip install <下载的文件名(包括后缀)>

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值