1.安装conda
2.使用清华镜像源网站
如果切换镜像后当出现下载不了的情况,就先切换默认源,然后再修改另一个可以使用的conda源(一定要先恢复默认,再换另一个!!!)
切换回默认源
conda config --remove-key channels
再切换到国内的镜像源(不然下载速度可能太慢)
分别输入以下4行代码:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
3.创建Pytorch环境
conda create -n py38 python=3.8
4 激活虚拟环境
activate py38
5. 安装pytorch
5.1 查看cuda版本
nvcc --version
输出
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2019 NVIDIA Corporation
Built on Wed_Oct_23_19:32:27_Pacific_Daylight_Time_2019
Cuda compilation tools, release 10.2, V10.2.89
表明版本10.2
或者
nvidia-smi
显示的CUDA版本实际上是驱动程序支持的最高CUDA版本。
5.2 查找对应版本的pytorch
Pytorch官网:PyTorch
复制粘贴到conda中
5.3 时间问题的话 可以先下载到本地
torch对用版本安装包链接:https://download.pytorch.org/whl/torch_stable.html
cuda版本10.2 选择cu102 选择torch1.8.0 选择cp38(因为python是3.8的) 选择win_amd64
下载后进入文件夹 使用pip本地安装
pip install <下载的包的名字,要加后缀>
6.验证
6.1 conda中
python
import torch
print(torch.cuda.is_available())
输出true成功
6.2pycharm中
7. 安装torchvision
7.1 确定cuda、torch的版本
nvcc --version
显示cuda版本是10.2的
python
import torch
print(torch.__version__)
输出如下:
torch版本1.8.0
7.2 查找对应版本的torchvisio
我这里需要0.9的
7.3 将torchvision下载到本地
地址:download.pytorch.org/whl/torch_stable.html
我需要下载cuda10.2 torch1.8.0 torchvision0.9的
选择cu102 torchvision 0.9.0 cp38(因为python3.8) windows amd64的
7.4 安装
打开anaconda 进入到安装包所在的文件地址
pip install <下载的文件名(包括后缀)>