安装Anaconda、cuda、pytorch、pycharm

1.安装Anaconda,配置环变量

在清华源镜像地址下载:

https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/

我的windows选择Anaconda3-2024.10-1-Windows-x86_64.exe这个版本

正常安装,可放置在D盘,

第二个选项不用选

配置环境变量,右击此电脑,属性,进去点击如下图标

将如下三条路径添加到环境变量中(在anaconda的安装路径中)

验证安装

点击windows图标,找到Anaconda Prompt

输入 conda --version

出现conda 24.9.2 

即安装成功

2.安装CUDA

选择显卡对应的版本的cuda,下面是所有版本的cuda官网

CUDA Toolkit Archive | NVIDIA Developer

我选择下载cuda的11.8版本,点击Download(3.0G)

CUDA Toolkit 11.8 Downloads | NVIDIA Developer

正常安装前面后,选择自定义安装,仅选择cuda,且VS不用选,安装位置默认在C盘即可。

配置环境变量,同上将如下4条路径添加到环境变量中(在cuda的安装路径中)

验证安装

点击win+R,输入cmd.

输入nvcc -V,出现如下代表安装成功

3.安装pytorch

 首先创建一个虚拟环境,打开Anaconda Prompt

输入conda create -n pinn(虚拟环境名) python=3.8

enter后,输入y,进入pinn虚拟空间,

输入conda activate pinn

然后找pytorch下载链接

选择和cuda版本对应的版本

PyTorch(进官网可能需要梯子)

我选择的是以前版本2.3.1

Previous PyTorch Versions | PyTorch

最后输入

conda install pytorch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 pytorch-cuda=11.8 -c pytorch -c nvidia

enter后,输入y,下载中断,继续复制链接下载,直至成功

验证安装,在pinn虚拟空间中,依次输入

python

import torch

torch.cuda.is_available()

出现True即成功

4.安装pycharm

下载社区版,正常安装,放在D盘,

Download PyCharm: The Python IDE for data science and web development by JetBrains

5.连接pytorch和pycharm

新建项目,放在D盘

配置环境,找到conda.bat文件

等待环境创建完成

添加新的解释器,选择虚拟环境pinn.

等待环境创建完成

验证pytorch和pycharm是否连接成功

新建一个python文件,输入以下内容

import torch

print(torch.cuda.is_available())

右键运行出现True即成功。

 

 

 

 

 

 

 

 

 

 

 

 

### 安装支持CUDAPyTorch并配置PyCharm #### 创建新的Conda环境 为了确保依赖项不会冲突,建议创建一个新的 Conda 环境来安装 PyTorch 和其他必要的库。 ```bash conda create --name pytorch_env python=3.6 ``` 激活新创建的环境: ```bash conda activate pytorch_env ``` #### 安装PyTorch及相关组件 根据指定的需求,在 Anaconda 中通过 `conda` 命令安装带有 CUDA 支持的 PyTorch 版本以及 torchvision 库[^1]。 ```bash conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch ``` 这一步骤将自动处理所有必需的依赖关系,并设置好适合 CUDA 10.0 的 PyTorch 环境。 #### 配置PyCharm以使用该环境 启动 PyCharm 并按照以下方式配置项目解释器以便利用刚建立好的 conda 环境中的 Python 解释器和包集合。 - 打开 PyCharm 后进入 **File | Settings** (Windows/Linux) 或者 **PyCharm | Preferences** (macOS). - 寻找 **Project: <project_name> | Python Interpreter**,点击右侧齿轮图标选择 **Add...** - 在弹出窗口中挑选左侧列表里的 "Conda Environment",然后选中"Existing environment" - 浏览至之前创建的 conda 虚拟环境下对应的 Python 可执行文件位置,通常位于 anaconda3/envs/pytorch_env/bin/python. - 完成上述操作后确认更改使 PyCharm 使用此特定版本的 Python 进行开发. 这样就完成了在 Anaconda安装CUDA 加速功能的 PyTorch,并将其与 PyCharm IDE 整合的工作流程.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值