逻辑回归 Demo实践

Step1:库函数导入

# 基础函数库
import numpy as np
# 导入画图库
import matplotlib.pyplot as plt
import seaborn as sns
#导入逻辑回归模型函数
from sklearn.linear_model import LogisticRegression

Step2:模型训练

# 构造数据集
x_features=np.array([[-1, -2], [-2, -1], [-3, -2], [1, 2], [2, 1], [3, 2]])
y_label = np.array([0, 0, 0, 1, 1, 1])
# 调用逻辑回归模型
lr_c = LogisticRegression()
# 用逻辑回归模型拟合构造的数据集
# 拟合方程为y=w0+w1*x1+w2*x2
lr_cc = lr_c.fit(x_features,y_label)

Step3:模型参数查看

## 查看其对应模型的w
print('the weight of Logistic Regression:',lr_c.coef_)

## 查看其对应模型的w0
print('the intercept(w0) of Logistic Regression:',lr_c.intercept_)
the weight of Logistic Regression: [[0.75047876 0.70836656]]
the intercept(w0) of Logistic Regression: [0.]

Step4:数据和模型可视化

## 可视化构造的数据样本点
plt.figure()

# s:指定散点的大小
# c:指定散点的颜色
# cmap:颜色映射对象,用于把标量映射为颜色。默认为None
plt.scatter(x_features[:,0],x_features[:,1],c=y_label,s=50,cmap='viridis')

plt.title('Dataset')
plt.show()

在这里插入图片描述

# 可视化决策边界
plt.figure()
plt.scatter(x_features[:,0],x_features[:,1],c=y_label,s=50,cmap='viridis')
plt.title('Dataset')

nx, ny = 200, 100
#设置坐标轴范围
x_min, x_max = plt.xlim()
# print(x_min, x_max)
y_min, y_max = plt.ylim()
# print(y_min, y_max)

# 返回网格坐标矩阵
x_grid, y_grid = np.meshgrid(np.linspace(x_min, x_max, nx),np.linspace(y_min, y_max, ny))
# print(x_grid, y_grid)


# np.mgrid[起始值:结束值:步长,起始值:结束值:步长]
# x.ravel() 将x变为一维数组,即将x拉直
# np.c_[]将返回的间隔数值点配对
# np.c_[数组1,数组2,]
# predict_proba返回的是一个 n 行 k 列的数组, 第 i 行 第 j 列上的数值是模型预测 第 i 个预测样本为某个标签的概率,并且每一行的概率和为1。
z_proba = lr_c.predict_proba(np.c_[x_grid.ravel(), y_grid.ravel()])
# print(z_proba)

# reshape函数是MATLAB中将指定的矩阵变换成特定维数矩阵一种函数,
# 且矩阵中元素个数不变,函数可以重新调整矩阵的行数、列数、维数。
# 函数语法为B = reshape(A,size)是指返回一个和A元素相同的n维数组,
# 但是由向量size来决定重构数组维数的大小。
z_proba = z_proba[:, 1].reshape(x_grid.shape)
# print(z_proba)

# contour用来绘制矩阵数据的等高线
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')
plt.show()

在这里插入图片描述

## 可视化预测新样本

plt.figure()

## new point 1
x_fearures_new1 = np.array([[0, -1]])
plt.scatter(x_fearures_new1[:,0],x_fearures_new1[:,1], s=50, cmap='viridis')

# 对点(x,y)添加带箭头的注释文本。
# xy:(float,float),浮点数组成的元组,被注释点的坐标
# xytext:(float,float),浮点数组成的元组,放置注释文本的坐标
# arrowstyle:箭头类型
# connectionstyle:连接类型
plt.annotate(text='New point 1',xy=(0,-1),xytext=(-2,0),color='blue',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

## new point 2
x_fearures_new2 = np.array([[1, 0.5]])
plt.scatter(x_fearures_new2[:,0],x_fearures_new2[:,1], s=50, cmap='viridis')
plt.annotate(text='New point 2',xy=(1,0.5),xytext=(-1.5,2.5),color='red',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

## 训练样本
plt.scatter(x_features[:,0],x_features[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')

# 可视化决策边界
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

plt.show()

在这里插入图片描述

Step5:模型预测

## 在训练集和测试集上分别利用训练好的模型进行预测
y_label_new1_predict = lr_c.predict(x_fearures_new1)
y_label_new2_predict = lr_c.predict(x_fearures_new2)

print('The New point 1 predict class:',y_label_new1_predict)
print('The New point 2 predict class:',y_label_new2_predict)

## 由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta),所以我们可以利用 predict_proba 函数预测其概率
y_label_new1_predict_proba = lr_c.predict_proba(x_fearures_new1)
y_label_new2_predict_proba = lr_c.predict_proba(x_fearures_new2)

print('The New point 1 predict Probability of each class:\n',y_label_new1_predict_proba)
print('The New point 2 predict Probability of each class:\n',y_label_new2_predict_proba)
The New point 1 predict class: [0]
The New point 2 predict class: [1]
The New point 1 predict Probability of each class:
 [[0.67004013 0.32995987]]
The New point 2 predict Probability of each class:
 [[0.24886739 0.75113261]]
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值