Seedream-4.0:新一代生成式 AI 框架的技术深度与实践落地

AI的出现,是否能替代IT从业者? 10w+人浏览 1.5k人参与

一、Seedream-4.0 概述:定位与核心价值

Seedream-4.0 是面向生成式人工智能领域的新一代开源框架,聚焦于多模态内容生成(文本、图像、音频、视频)的轻量化、高效率与低门槛落地。相较于前序版本,Seedream-4.0 重构了核心推理引擎,优化了分布式训练架构,并新增了针对边缘设备的适配层,同时兼容主流大模型生态(如 LLaMA、SDXL、Qwen 等),成为兼顾学术研究与工业级应用的综合性框架。

从技术定位来看,Seedream-4.0 解决了传统生成式 AI 框架的三大痛点:一是推理效率低,通过算子融合、量化压缩等技术将推理速度提升 300%;二是部署门槛高,提供一键式部署工具链,支持 Docker、K8s、边缘终端等多环境;三是定制化难度大,开放模块化插件体系,允许开发者快速适配垂直领域场景(如电商文案生成、工业质检图像合成、智能客服语音生成)。

从应用价值来看,Seedream-4.0 已在内容创作、智能制造、数字人、智能客服等领域落地,其轻量化特性可运行在消费级 GPU(如 RTX 4090)甚至 ARM 架构的边缘设备(如 Jetson Orin)上,大幅降低了生成式 AI 的应用成本,推动 AI 技术从实验室走向规模化商用。

二、Seedream-4.0 核心技术架构

2.1 整体架构设计

Seedream-4.0 采用 “核心层 - 扩展层 - 应用层” 三级架构,各层职责清晰且解耦,保证框架的灵活性与扩展性:

  • 核心层:包含推理引擎、训练引擎、量化引擎、分布式通信模块,是框架的底层基石,负责模型的计算、存储与通信;
  • 扩展层:包含多模态适配插件、行业场景模板、数据预处理工具,承接核心层的能力并适配不同模态与场景;
  • 应用层:提供 API 接口、可视化控制台、CLI 工具,面向开发者与业务人员提供交互入口。

2.2 关键技术突破

(1)轻量化推理引擎:算子融合与动态量化

Seedream-4.0 自研的 LightInfer 推理引擎针对生成式模型的特性做了深度优化:

  • 算子融合:将 Transformer 架构中的 Attention、FeedForward 等算子合并为复合算子,减少 GPU 显存读写次数,单批次推理延迟降低 40%;
  • 动态量化:支持 INT8/INT4 混合精度量化,在精度损失控制在 1% 以内的前提下,模型体积压缩 75%,推理显存占用降低 60%;
  • 动态批处理:根据输入数据长度自动调整批处理大小,避免小批量数据的算力浪费,吞吐量提升 200%。
(2)分布式训练架构:弹性并行策略

针对大模型训练的算力瓶颈,Seedream-4.0 设计了弹性并行训练策略:

  • 支持数据并行、模型并行、流水线并行的混合部署,可根据集群资源自动调整并行策略;
  • 基于 NCCL 2.18 优化通信链路,跨节点通信延迟降低 25%;
  • 提供断点续训、增量训练功能,支持训练过程中动态调整学习率、批次大小等超参数。
(3)多模态融合模块:统一表征空间

Seedream-4.0 突破了传统单模态生成的局限,构建了多模态统一表征空间:

  • 通过跨模态注意力机制(Cross-Modal Attention)将文本、图像、音频的特征映射至同一向量空间;
  • 支持模态间的双向转换(如文本生成图像、图像生成语音描述);
  • 内置模态质量评估模块,自动校验生成内容的准确性与流畅性。

三、Seedream-4.0 核心功能实战

3.1 环境搭建与基础配置

3.1.1 环境依赖

Seedream-4.0 支持 Linux(Ubuntu 20.04+/CentOS 8+)、Windows 10/11(WSL2)、macOS 12+,推荐硬件配置:

  • CPU:8 核及以上(x86_64/ARM64);
  • GPU:NVIDIA GPU(显存 12G+,支持 CUDA 11.8+);
  • 内存:32G+;
  • 存储:100G+(含模型权重与数据集)。
3.1.2 安装步骤
# 1. 克隆源码仓库

git clone https://github.com/seedream-lab/seedream-4.0.git

cd seedream-4.0

# 2. 创建并激活虚拟环境

conda create -n seedream4.0 python=3.10

conda activate seedream4.0

# 3. 安装依赖(区分CPU/GPU版本)

# GPU版本(推荐)

pip install -r requirements-gpu.txt

# CPU版本

# pip install -r requirements-cpu.txt

# 4. 验证安装

python -m seedream.cli --version

# 输出 Seedream-4.0 v4.0.0 则安装成功

3.2 文本生成实战:智能文案创作

Seedream-4.0 内置轻量级文本生成模型 SeedLM-7B,支持电商文案、新闻稿、广告语等场景的定制化生成。

3.2.1 基础文本生成
import torch

from seedream.text import SeedLMGenerator

# 初始化生成器(指定模型路径,自动下载权重)

generator = SeedLMGenerator(

model_path="seedream/SeedLM-7B",

device="cuda:0" if torch.cuda.is_available() else "cpu",

dtype=torch.float16 # 混合精度推理

)

# 定义生成参数

prompt = """

请为一款智能保温杯创作电商详情页文案,要求:

1. 突出316不锈钢材质、智能温控(0-100℃可调)、24小时保温特性;

2. 语言风格亲切,适合年轻消费群体;

3. 字数控制在300字左右。

"""

# 生成文本

output = generator.generate(

prompt=prompt,

max_new_tokens=300, # 最大生成字数

temperature=0.7, # 随机性(0-1,值越高越灵活)

top_p=0.9, # 核采样

repetition_penalty=1.1 # 重复惩罚

)

# 输出结果

print("生成的文案:")

print(output[0]["generated_text"])
3.2.2 定制化场景模板

Seedream-4.0 提供场景模板功能,可快速适配垂直领域:

from seedream.text import TemplateManager

# 加载电商文案模板

template_manager = TemplateManager()

template = template_manager.load_template("ecommerce/product_description")

# 填充模板参数

template_params = {

"product_name": "智暖Pro智能保温杯",

"core_features": ["316医用级不锈钢", "0-100℃智能温控", "24小时长效保温"],

"target_audience": "都市白领、学生群体",

"selling_point": "一杯多用,精准控温,告别水温不合适的烦恼"

}

# 生成定制化文案

custom_prompt = template.render(**template_params)

output = generator.generate(

prompt=custom_prompt,

max_new_tokens=300,

temperature=0.6

)

print("定制化文案:")

print(output[0]["generated_text"])
3.2.3 结果优化与评估

Seedream-4.0 内置文本质量评估模块,可自动评估生成内容的流畅度、相关性、合规性:

from seedream.evaluation import TextEvaluator

evaluator = TextEvaluator(device="cuda:0")

# 评估生成结果

eval_result = evaluator.evaluate(

prompt=prompt,

generated_text=output[0]["generated_text"],

metrics=["fluency", "relevance", "compliance"] # 评估维度

)

print("评估结果:")

for metric, score in eval_result.items():

print(f"{metric}({metric}):{score:.2f}/1.0")

# 优化生成结果(基于评估反馈调整参数)

if eval_result["relevance"] < 0.8:

output_optimized = generator.generate(

prompt=prompt,

max_new_tokens=300,

temperature=0.5,

top_p=0.85,

repetition_penalty=1.2

)

print("优化后文案:")

print(output_optimized[0]["generated_text"])

3.3 图像生成实战:SDXL 轻量化部署

Seedream-4.0 对 SDXL(Stable Diffusion XL)进行了深度优化,支持轻量化部署与定制化图像生成。

3.3.1 基础图像生成
import torch

from seedream.image import SDXLGenerator

from PIL import Image

# 初始化SDXL生成器

sdxl_generator = SDXLGenerator(

model_path="seedream/SDXL-Light-1.0",

device="cuda:0" if torch.cuda.is_available() else "cpu",

use_quantization=True, # 启用INT8量化

cache_dir="./cache" # 缓存目录

)

# 定义图像生成参数

prompt = "a futuristic city at sunset, neon lights, cyberpunk style, high detail, 8k resolution"

negative_prompt = "blurry, low resolution, ugly, distorted, watermark"

# 生成图像

images = sdxl_generator.generate(

prompt=prompt,

negative_prompt=negative_prompt,

width=1024,

height=1024,

num_inference_steps=20, # 推理步数(量化后可降低至20步,不损失质量)

guidance_scale=7.5, # 引导尺度

num_images_per_prompt=1 # 每次生成数量

)

# 保存图像

images[0].save("cyberpunk_city.png")

Image.open("cyberpunk_city.png").show()
3.3.2 图像风格迁移

Seedream-4.0 支持基于参考图像的风格迁移,实现定制化视觉效果:

# 加载参考图像(梵高《星月夜》风格)

reference_image = Image.open("starry_night.jpg").convert("RGB")

# 风格迁移生成

styled_images = sdxl_generator.generate_with_style(

prompt="a cat sitting on a windowsill, warm sunlight, soft fur",

negative_prompt=negative_prompt,

reference_image=reference_image,

style_strength=0.8, # 风格强度(0-1)

width=1024,

height=1024,

num_inference_steps=25

)

# 保存风格迁移图像

styled_images[0].save("van_gogh_cat.png")

Image.open("van_gogh_cat.png").show()
3.3.3 批量图像生成与优化

针对工业级场景的批量生成需求,Seedream-4.0 提供异步批量处理接口:

import asyncio

from seedream.image import AsyncSDXLGenerator

# 初始化异步生成器

async_generator = AsyncSDXLGenerator(

model_path="seedream/SDXL-Light-1.0",

device="cuda:0",

use_quantization=True,

batch_size=4 # 批量大小

)

# 定义批量生成任务

prompts = [

"a mountain landscape with snow, minimalist style",

"a coffee cup on a wooden table, warm tones, realistic",

"a robot playing guitar, cartoon style, colorful",

"a library with floating books, fantasy style"

]

# 异步生成

async def batch_generate():

tasks = [

async_generator.generate(

prompt=p,

negative_prompt=negative_prompt,

width=768,

height=768,

num_inference_steps=20

) for p in prompts

]

results = await asyncio.gather(*tasks)

return results

# 执行异步任务并保存结果

loop = asyncio.get_event_loop()

batch_results = loop.run_until_complete(batch_generate())

for i, img in enumerate(batch_results):

img[0].save(f"batch_image_{i}.png")

3.4 多模态生成实战:文本 - 图像 - 音频联动

Seedream-4.0 的核心优势在于多模态融合,可实现 “文本生成图像 + 图像生成音频描述” 的联动生成。

from seedream.multimodal import MultiModalPipeline

from seedream.audio import TTSGenerator

# 初始化多模态流水线

multimodal_pipeline = MultiModalPipeline(

text2img_model="seedream/SDXL-Light-1.0",

img2text_model="seedream/CLIP-Light-1.0",

device="cuda:0"

)

# 1. 文本生成图像

text_prompt = "a peaceful forest with a small stream, birds singing, morning mist"

img = multimodal_pipeline.text_to_image(

prompt=text_prompt,

width=1024,

height=768,

num_inference_steps=20

)[0]

img.save("forest.png")

# 2. 图像生成文本描述

img_text = multimodal_pipeline.image_to_text(

image=img,

max_length=100

)[0]

print("图像生成的文本描述:", img_text)

# 3. 文本描述生成音频(TTS)

tts_generator = TTSGenerator(

model_path="seedream/TTS-Light-1.0",

device="cuda:0"

)

audio_data = tts_generator.generate(

text=img_text,

voice="female_calm", # 音色选择

speed=1.0, # 语速

volume=0.8 # 音量

)

# 保存音频文件

import soundfile as sf

sf.write("forest_audio.wav", audio_data, samplerate=22050)

# 播放音频(可选)

import sounddevice as sd

sd.play(audio_data, samplerate=22050)

sd.wait()

3.5 分布式训练实战:自定义文本生成模型

针对有定制化训练需求的开发者,Seedream-4.0 提供分布式训练接口,支持基于自有数据集微调模型。

3.5.1 数据集准备

首先准备自定义数据集(JSONL 格式):

{"prompt": "为奶茶店创作广告语:", "response": "一口丝滑,甜入心扉——XX奶茶,温暖你的日常!"}

{"prompt": "为健身房创作宣传文案:", "response": "突破自我,重塑身形——XX健身,遇见更好的自己!"}

{"prompt": "为书店创作海报文案:", "response": "一页纸,一世界——XX书店,与好书不期而遇!"}
3.5.2 分布式训练代码
import torch

from seedream.training import DistributedTrainer

from seedream.text import SeedLMModel

from seedream.data import TextDataset

# 初始化分布式训练器(2卡训练)

trainer = DistributedTrainer(

num_nodes=1, # 节点数

num_gpus_per_node=2, # 每节点GPU数

master_addr="127.0.0.1",

master_port="29500"

)

# 加载数据集

dataset = TextDataset(

data_path="./custom_dataset.jsonl",

tokenizer_path="seedream/SeedLM-7B",

max_seq_len=512

)

train_loader = dataset.get_dataloader(batch_size=8, shuffle=True)

# 加载基础模型

model = SeedLMModel(

model_path="seedream/SeedLM-7B",

device=trainer.local_rank,

dtype=torch.bfloat16

)

# 定义训练参数

train_config = {

"epochs": 5,

"learning_rate": 2e-5,

"weight_decay": 0.01,

"warmup_steps": 100,

"save_steps": 500,

"save_dir": "./finetuned_model",

"log_dir": "./logs"

}

# 启动分布式训练

trainer.train(

model=model,

train_loader=train_loader,

**train_config

)

# 训练完成后验证模型

trained_model = SeedLMGenerator(

model_path="./finetuned_model",

device="cuda:0"

)

test_prompt = "为咖啡店创作广告语:"

test_output = trained_model.generate(prompt=test_prompt, max_new_tokens=50)

print("微调后模型生成结果:", test_output[0]["generated_text"])

四、Seedream-4.0 性能优化与调优指南

4.1 推理性能调优

(1)硬件层面
  • GPU 显存优化:启用torch.cuda.empty_cache()定期释放显存,或使用gradient_checkpointing减少显存占用;
  • 多 GPU 并行:使用DataParallel或DistributedDataParallel实现多卡推理;
  • 边缘设备适配:针对 ARM 架构(如 Jetson Orin),编译时启用TORCH_CUDNN_V8_API_ENABLED=1优化算子。
(2)软件层面
# 推理性能调优示例

from seedream.optimization import InferenceOptimizer

# 初始化优化器

optimizer = InferenceOptimizer()

# 1. 算子融合优化

optimized_model = optimizer.fuse_operators(model)

# 2. 动态批处理优化

optimized_loader = optimizer.dynamic_batch_loader(train_loader, batch_size_range=(4, 16))

# 3. 量化优化(INT4/INT8)

quantized_model = optimizer.quantize_model(

model,

quant_type="int8", # 可选int4/int8

quant_mode="dynamic" # 动态量化

)

# 4. 推理速度测试

import time

def test_inference_speed(model, prompt):

start_time = time.time()

for _ in range(100):

model.generate(prompt=prompt, max_new_tokens=100)

end_time = time.time()

avg_time = (end_time - start_time) / 100

print(f"平均推理时间:{avg_time:.4f}秒/次")

# 测试优化前后速度

print("优化前:")

test_inference_speed(model, "测试文案生成")

print("优化后:")

test_inference_speed(quantized_model, "测试文案生成")

4.2 训练性能调优

  • 混合精度训练:启用torch.cuda.amp自动混合精度,减少显存占用并提升训练速度;
  • 梯度累积:设置gradient_accumulation_steps,模拟大批次训练;
  • 数据预处理优化:使用Dataset.map+num_proc多进程预处理数据。
# 训练性能调优示例

from torch.cuda.amp import autocast, GradScaler

scaler = GradScaler()

gradient_accumulation_steps = 4

for epoch in range(train_config["epochs"]):

model.train()

total_loss = 0.0

for step, batch in enumerate(train_loader):

with autocast(): # 混合精度

loss = model(**batch)

loss = loss / gradient_accumulation_steps # 梯度累积

scaler.scale(loss).backward()

if (step + 1) % gradient_accumulation_steps == 0:

scaler.step(optimizer)

scaler.update()

optimizer.zero_grad()

if step % 100 == 0:

print(f"Epoch {epoch}, Step {step}, Loss: {loss.item() * gradient_accumulation_steps:.4f}")

五、Seedream-4.0 工业级部署实践

5.1 Docker 容器化部署

(1)编写 Dockerfile
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04

# 设置环境变量

ENV PYTHONUNBUFFERED=1 \

CONDA_HOME=/opt/conda \

PATH=/opt/conda/bin:$PATH

# 安装依赖

RUN apt-get update && apt-get install -y --no-install-recommends \

git \

wget \

build-essential \

&& rm -rf /var/lib/apt/lists/*

# 安装Miniconda

RUN wget https://repo.anaconda.com/miniconda/Miniconda3-py310_23.10.0-1-Linux-x86_64.sh -O miniconda.sh \

&& bash miniconda.sh -b -p $CONDA_HOME \

&& rm miniconda.sh

# 创建并激活环境

RUN conda create -n seedream4.0 python=3.10 -y \

&& echo "conda activate seedream4.0" >> ~/.bashrc

# 克隆源码并安装依赖

RUN git clone https://github.com/seedream-lab/seedream-4.0.git /app/seedream-4.0 \

&& cd /app/seedream-4.0 \

&& conda run -n seedream4.0 pip install -r requirements-gpu.txt

# 设置工作目录

WORKDIR /app/seedream-4.0

# 暴露端口(API服务)

EXPOSE 8000

# 启动API服务

CMD ["conda", "run", "-n", "seedream4.0", "python", "-m", "seedream.server", "--host", "0.0.0.0", "--port", "8000"]
(2)构建并运行容器
# 构建镜像

docker build -t seedream4.0:v1.0 .

# 运行容器(挂载GPU)

docker run --gpus all -p 8000:8000 -v ./cache:/app/seedream-4.0/cache seedream4.0:v1.0

5.2 RESTful API 服务部署

Seedream-4.0 内置 FastAPI 服务,可快速对外提供生成式 AI 接口:

# server.py

from fastapi import FastAPI, HTTPException

from pydantic import BaseModel

from seedream.text import SeedLMGenerator

from seedream.image import SDXLGenerator

import torch

app = FastAPI(title="Seedream-4.0 API Service")

# 初始化生成器

text_generator = SeedLMGenerator(

model_path="seedream/SeedLM-7B",

device="cuda:0" if torch.cuda.is_available() else "cpu"

)

image_generator = SDXLGenerator(

model_path="seedream/SDXL-Light-1.0",

device="cuda:0" if torch.cuda.is_available() else "cpu",

use_quantization=True

)

# 定义请求模型

class TextGenRequest(BaseModel):

prompt: str

max_new_tokens: int = 200

temperature: float = 0.7

class ImageGenRequest(BaseModel):

prompt: str

negative_prompt: str = ""

width: int = 1024

height: int = 1024

num_inference_steps: int = 20

# 文本生成接口

@app.post("/api/text/generate")

async def generate_text(request: TextGenRequest):

try:

result = text_generator.generate(

prompt=request.prompt,

max_new_tokens=request.max_new_tokens,

temperature=request.temperature

)

return {"status": "success", "data": result[0]["generated_text"]}

except Exception as e:

raise HTTPException(status_code=500, detail=str(e))

# 图像生成接口(返回Base64编码)

import base64

from io import BytesIO

@app.post("/api/image/generate")

async def generate_image(request: ImageGenRequest):

try:

images = image_generator.generate(

prompt=request.prompt,

negative_prompt=request.negative_prompt,

width=request.width,

height=request.height,

num_inference_steps=request.num_inference_steps

)

# 转换为Base64

buffer = BytesIO()

images[0].save(buffer, format="PNG")

img_base64 = base64.b64encode(buffer.getvalue()).decode("utf-8")

return {"status": "success", "data": img_base64}

except Exception as e:

raise HTTPException(status_code=500, detail=str(e))

if __name__ == "__main__":

import uvicorn

uvicorn.run(app, host="0.0.0.0", port=8000)

启动服务后,可通过 HTTP 请求调用接口:


# 文本生成请求

curl -X POST "http://localhost:8000/api/text/generate" \

-H "Content-Type: application/json" \

-d '{"prompt": "创作一句情人节广告语", "max_new_tokens": 50, "temperature": 0.8}'

# 图像生成请求

curl -X POST "http://localhost:8000/api/image/generate" \

-H "Content-Type: application/json" \

-d '{"prompt": "red rose on a white background", "width": 768, "height": 768}'

5.3 边缘设备部署(Jetson Orin)

Seedream-4.0 针对 ARM64 架构的边缘设备做了适配,以下是 Jetson Orin 上的部署步骤:

# 1. 安装JetPack(含CUDA 11.4+)

sudo apt-get install nvidia-jetpack

# 2. 安装Miniconda

wget https://repo.anaconda.com/miniconda/Miniconda3-py310_23.10.0-1-Linux-aarch64.sh

bash Miniconda3-py310_23.10.0-1-Linux-aarch64.sh -b -p ~/miniconda3

source ~/miniconda3/bin/activate

# 3. 安装依赖(ARM版本)

conda create -n seedream4.0 python=3.10

conda activate seedream4.0

pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu118

pip install -r requirements-arm64.txt

# 4. 运行轻量化模型(INT4量化)

python -m seedream.cli text generate \

--prompt "生成一句智能家居宣传语" \

--model seedream/SeedLM-2B-int4 \

--device cuda:0

六、Seedream-4.0 应用场景与案例

6.1 内容创作领域

  • 电商文案自动化:某头部电商平台基于 Seedream-4.0 开发文案生成工具,支持 100 + 品类的商品标题、详情页文案自动生成,日均生成文案 10 万 + 条,人力成本降低 80%;
  • 数字内容创作:自媒体创作者使用 Seedream-4.0 的多模态生成能力,快速生成图文 + 音频内容,创作效率提升 3 倍以上。

6.2 智能制造领域

  • 工业质检图像合成:某汽车零部件厂商使用 Seedream-4.0 生成大量缺陷样本图像(如裂纹、变形、划痕),用于训练质检模型,模型准确率提升 15%;
  • 设备手册生成:基于设备参数自动生成多语言操作手册,支持文本 + 示意图联动生成,手册制作周期从 7 天缩短至 1 天。

6.3 智能客服领域

  • 语音交互定制化:某银行基于 Seedream-4.0 的 TTS 模块定制客服语音,支持方言(如粤语、四川话)生成,客户满意度提升 20%;
  • 智能问答文案生成:自动生成 FAQ、智能回复话术,适配不同客户的沟通风格,回复准确率达 95% 以上。

6.4 教育领域

  • 个性化课件生成:教师输入知识点,自动生成图文并茂的课件(文本 + 示意图 + 音频讲解),适配不同年龄段学生的认知水平;
  • 多语言教材翻译与生成:支持小语种教材的自动翻译与本地化改写,降低教材制作成本。

七、Seedream-4.0 未来规划与生态建设

7.1 版本迭代方向

  • Seedream-4.1:新增视频生成模块,支持文本 / 图像生成短视频,优化多模态融合精度;
  • Seedream-4.2:强化低资源语言支持,新增 10 + 小语种的文本 / 语音生成能力;
  • Seedream-5.0:构建端云协同架构,支持边缘设备与云端模型的动态协同推理。

7.2 生态建设

  • 开源社区:开放模型权重、训练脚本、应用案例,鼓励开发者贡献插件与模板;
  • 行业联盟:与硬件厂商(NVIDIA、华为)、云服务商(阿里云、腾讯云)合作,推出适配不同硬件的优化版本;
  • 开发者计划:提供免费的模型训练资源、技术培训与认证,降低开发者使用门槛。

八、总结

Seedream-4.0 作为新一代生成式 AI 框架,以 “轻量化、高效率、低门槛” 为核心,通过推理引擎优化、分布式训练架构、多模态融合等技术突破,解决了生成式 AI 在落地过程中的效率、成本、适配性问题。从技术实践来看,Seedream-4.0 覆盖了文本、图像、音频等多模态生成场景,提供了完整的训练、推理、部署工具链,既满足学术研究的灵活性,又适配工业级应用的稳定性。

未来,随着 Seedream-4.0 生态的不断完善,其将进一步推动生成式 AI 向更广泛的领域渗透,从内容创作、智能制造到教育、医疗,真正实现 AI 技术的普惠化应用。对于开发者而言,Seedream-4.0 不仅是一套工具,更是连接 AI 技术与业务场景的桥梁,帮助更多企业与个人快速拥抱生成式 AI 的价值。

评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值