ACwing 1018 最低通行费

ACwing 1018 最低通行费

在这里插入图片描述

该题思路与上题思路相似

**状态转移方程: **w[i] [j]为权值
f [ i ] [ j ] = M a t h . m i n ( f [ i − 1 ] [ j ] , f [ i ] [ j − 1 ] ) + w [ i ] [ j ] ; f[i][j] = Math.min(f[i-1][j] , f[i][j-1])+w[i][j]; f[i][j]=Math.min(f[i1][j],f[i][j1])+w[i][j];

import java.util.*;
public class Main{
    static int N = 105;
    static int[][] g = new int[N][N];
    static int[][] f =  new int[N][N];
    public static void main(String[] args){
        Scanner in = new Scanner(System.in);
        int n = in.nextInt();
        for(int i = 0 ; i <= n ; i++){
            for(int j = 0 ; j<= n ;j++){
                if(i>0 && j > 0 ) g[i][j] = in.nextInt();
                if(i==0 || j == 0) f[i][j] = 0x3f3f3f3f;
            }
        }
        f[1][0] = 0;
        f[0][1] = 0;
        for(int i = 1 ; i <= n ; i++){
            for(int j = 1 ; j <= n  ;j++){
                f[i][j] = Math.min(f[i-1][j] , f[i][j-1])+g[i][j];
            }
        }

        System.out.println(f[n][n]);
    
    }
}
根据引用\[1\]和引用\[2\]的描述,这个问题可以使用动态规划来解决。我们可以定义一个二维数组dp,其中dp\[i\]\[j\]表示从左上角(1,1)到(i,j)位置的所有路径中,缴纳费用最少的路径的缴纳费用。初始状态为dp\[1\]\[1\],即从(1,1)到(1,1)需要缴纳的费用,为a\[1\]\[1\]。 然后,我们可以使用状态转移方程来计算dp\[i\]\[j\]的值。根据引用\[3\]的描述,商人只能向上下左右四个方向移动且不能离开网格,所以我们可以考虑从上方或左方到达当前位置(i,j)。我们可以选择从上方到达(i,j)的路径或从左方到达(i,j)的路径中缴纳费用较少的那条路径,并将其加上当前位置的费用a\[i\]\[j\],即dp\[i\]\[j\] = min(dp\[i-1\]\[j\], dp\[i\]\[j-1\]) + a\[i\]\[j\]。 最后,我们可以得到从左上角到右下角的所有路径中,缴纳费用最少的路径的缴纳费用为dp\[N\]\[N\],其中N为正方形的宽度。 因此,对于给定的输入,我们可以使用动态规划算法来计算最低通行费。 #### 引用[.reference_title] - *1* [信息学奥赛一本通 1287:最低通行费 | OpenJudge NOI 2.6 7614:最低通行费](https://blog.csdn.net/lq1990717/article/details/125212152)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [19:最低通行费](https://blog.csdn.net/lml11111/article/details/70185998)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

渝北最后的单纯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值