在机器学习和数据挖掘领域,BP 神经网络是一种常用的工具,但它存在一些缺陷,如学习收敛速度慢、不能保证收敛到全局最小点、网络结构不易确定等。遗传算法则具有全局搜索能力,可用于优化 BP 神经网络的初始权值和阈值,从而提高网络的性能。本文将详细介绍基于遗传算法的 BP 神经网络优化算法,包括理论基础、案例背景、算法实现和结果分析等内容。
一、理论基础
(一)BP 神经网络概述
BP 网络是一类多层的前馈神经网络,其名字源于在网络训练过程中调整网络权值的算法是误差的反向传播学习算法(BP 学习算法)。该算法由 Rumelhart 等人在 1986 年提出,具有结构简单、可调整参数多、训练算法多、可操作性好等优点,被广泛应用于各个领域。然而,BP 神经网络也存在一些缺陷,如学习收敛速度慢、不能保证收敛到全局最小点、网络结构不易确定等。
(二)遗传算法的基本要素
- 染色体编码方法:包括二进制法、实数法等。本案例中使用 Sheffied 遗传算法工具箱,采用二进制编码方法。
- 适应度函数:根据进化目标编写的计算个体适应度值的函数。通过适应度函数计算每个个体的适应度值,提供给选择算子进行选择。
- 遗传操作:包括选择操作、交叉操作和变异操作。
- 运行参数:主要包括群体大小 M、遗传代数 G、交叉概率Pc和变异概率Pm。
二、案例背景
(一)问题描述
以某型拖拉机的齿轮箱为工程背景,介绍使用基于遗传算法的 BP 神经网络进行齿轮箱故障的诊断。选取频域中的几个特征量作为网络输入,由于数据具有不同的量纲和量级,在输入神经网络之前首先进行归一化处理。网络的输出为齿轮的故障模式,包括无故障、齿根裂纹和断齿三种。
(二)解题思路及步骤
- 算法流程
- 确定神经网络的拓扑结构。
- 对

最低0.47元/天 解锁文章
1532

被折叠的 条评论
为什么被折叠?



