统计学10——方差分析

目录

知识结构

内容精读 

1.基本概念

2.单因素方差分析 

3.双因素方差分析

3.1无交互作用的双因素方差分析

3.2有交互作用的双因素方差分析

名词解释


知识结构


内容精读 

1.基本概念

表面上,方差分析是检验多个总体均值是否相等的统计方法,但本质上它所研究的是分类型自变量对数值型因变量的影响。

误差分析

在方差分析中,数据的误差是用平方和来表示的。

反映全部数据误差大小的平方和称为总平方和,记为SST

反映组内误差大小的平方和称为组内平方和,也称误差平方和或残差平方和,记SSE

反映组间误差大小的平方和称为组间平方和,也称因素平方和,记为SSA

 基本假定

  • 每个总体都应该服从正态分布。
  • 各个总体的方差$\sigma^2$必须相同。
  • 观测值是独立的。

2.单因素方差分析 

(1)提出假设

$H_{0}:\mu_{1}=\mu_{2}=…=\mu_{k}$        自变量对因变量没有显著影响

$H_{1}:\mu_{1},\mu_{2},…,\mu_{k}$不全相等      自变量对因变量有显著影响

(2)计算误差平方和

总平方和$SSR=\sum_{i=1}^{k}\sum_{j=1}^{n_{i}}(x_{ij}-\bar{\bar{x}})^2$

其中$\bar{\bar{x}}=\frac {\sum_{i=1}^{k}\sum_{i=1}^{n_{i}}x_{ij}} {n}$,是全部观测值的总和除以观测值总个数的结果。

组间平方和$SSA=\sum_{i=1}^{k}n_{i}(\bar{x_{i}}-\bar{\bar{x}})^2$

组内平方和$SSE=\sum_{i=1}^{k}\sum_{j=1}^{n_{i}}$

有$SST=SSA+SSE$

(3)计算统计量

构建统计量的目的就是比较组内均方与组间均方的差异。

SSA的均方也称组间均方,记为MSA。

$$MSA=\frac{SSA}{k-1}$$

SSE的均方也叫组内均方,记为MSE。

$$MSE=\frac{SSE}{n-k}$$

由此构造F统计量

$$F=\frac{MSA}{MSE}~F(k-1,n-k)$$

 (4)统计决策

若$F>F_{\alpha}(k-1,n-k)$,则拒绝原假设H_{0},表明总体均值间有显著差异。

若$F<F_{\alpha}(k-1,n-k)$,则不拒绝原假设,不能认为总体均值间有显著差异。

(5)方差分析表

为使结果更加清晰,可以借助方差分析表:

误差来源

平方和

   ss

自由度

   df

均方

 MS

F值P值F临界值
组间SSAk-1MSAMSA/MSE
组内SSEn-kMSE
总和SSTn-1

(6)关系强度测量

当方差分析结果为均值之间有显著差异时,也就意味着自变量与因变量间的关系实现输的。那么如何衡量这一关系的强度?就需要用SSA占SST的比例来表示,记作$R^2$。

$$R^2=\frac{SSA}{SST}$$

(7)多重比较

当拒绝原假设后,我们只能知道均值间不全部相等,那么究竟哪两个或哪几个均值是不等的,就需要进行多重比较。这里介绍最小显著差异法,缩写为LSD。

  • 首先提出假设:$H_{0}:\mu_{i}=\mu_{j};H_{1}:\mu_{i}\neq{\mu_{j}}$。
  • 计算检验统计量:$\bar{x_{i}}-\bar{x_{j}}$。
  • 计算LSD,$LSD=t_{\alpha/2}\sqrt{MSE(\frac{1}{n_{i}} \frac{1}{n_{j}})}$
    其中t的自由度为n-k。
  • 若 $\left | \bar{x_{i}}-\bar{x_{j}} \right |>LSD $,则拒绝$H_{0}$。

3.双因素方差分析

当方差分析中涉及两个自变量时,称作双因素方差分析。

两个自变量分别为k行r列。

$\bar{x}_{i\cdot}$是行因素在第i个水平下各观测值的平均值,

$\bar{x}_{\cdot j}$是列因素的第j个水平下各观测值的平均值,

3.1无交互作用的双因素方差分析

(1)提出假设 

对行提出假设

$H_{0}:\mu_{1}=\mu_{2}=…=\mu_{k}$        行因素(自变量)对因变量没有显著影响

$H_{1}:\mu_{1},\mu_{2},…,\mu_{k}$不全相等     行因素(自变量)对因变量有显著影响

对列提出假设

$H_{0}:\mu_{1}=\mu_{2}=…=\mu_{r}$        列因素(自变量)对因变量没有显著影响

$H_{1}:\mu_{1},\mu_{2},…,\mu_{r}$不全相等     列因素(自变量)对因变量有显著影响

(2)误差计算与统计量构建

$$SST=\sum_{i=1}^{k}\sum_{j=1}^{r}(x_{ij}-\bar{\bar{x}})^2$$

其中行因素产生的误差为SSR:

$$SSR=\sum_{i=1}^{k}\sum_{j=1}^{r}(\bar{x}_{i\cdot}-\bar{\bar{x}})^2$$

列因素产生的误差为SSC: 

$$SSC=\sum_{i=1}^{k}\sum_{j=1}^{r}(\bar{x}_{\cdot j}-\bar{\bar{x}})^2$$

 最后是除了行列因素外的误差,也称随机误差,记为SSE:

$$SSE=\sum_{i=1}^{k}\sum_{j=1}^{r}(x_{ij}-\bar{x}_{i\cdot}-\bar{x}_{\cdot j}+\bar{\bar{x}})^2$$

有$SST=SSR+SSC+SSE$ 

双因素方差分析表如下:

误差来源

误差平方和

        ss

自由度

   df

均方

 MS

F值P值F临界值

   行因素

SSRk-1MSR$F_{R}$
列因素SSCr-1MSC$F_{C}$
误差SSE(k-1)(r-1)MSE
总和SSTkr-1

 PS:$MS=ss/df,F_{R}=\frac{MSR} {MSE},F_{C}=\frac{MSC}{MSE}$

 (3)统计决策

若$F_{r}>F_{\alpha}$,则拒绝原假设,说明行因素对观测值有显著影响。

若$F_{c}>F_{\alpha}$,同样拒绝原假设,说明列因素对观测值有显著影响。

(4)关系强度

在双因素方差分析中,关系强度计算的为两个自变量合起来与因变量之间的关系。

$$R^2=\frac{SSR+SSC} {SST}$$ 

3.2有交互作用的双因素方差分析

在前面的分析中,假定两个因素对因变量的影响是独立的,但如果两个因素搭配在一起会对因变量产生一种新的效应,就需要考虑交互作用对因变量的影响。

误差来源

误差平方和

        ss

自由度

   df

均方

 MS

F值P值F临界值

   行因素

SSRk-1MSR$F_{R}$
列因素SSCr-1MSC$F_{C}$
交互作用SSRC(k-1)(r-1)MSRC$F_{RC}=\frac{MSRC}{MSE}$
误差SSEkr(m-1)MSE
总和SSTkr-1

ps:m为行变量中每个水平的行数。

$$SST=\sum_{i=1}^{k}\sum_{j=1}^{r}\sum_{l=1}^{m}(x_{ij}-\bar{\bar{x}})^2$$

$$SSR=rm\sum_{i=1}^{k}(\bar{x}_{i\cdot}-\bar{\bar{x}})^2$$

$$SSC=km\sum_{j=1}^{r}(\bar{x}_{\cdot j}-\bar{\bar{x}})^2$$

$$SSRC=m\sum_{i=1}^{k}\sum_{j=1}^{r}(\bar{x}_{ij}-\bar{x}_{i\cdot}-\bar{x}_{\cdot j}+\bar{\bar{x}})^2$$

SSE=SST-SSR-SSC-SSRC

名词解释

 方差分析

方差分析,又称“变异数分析”或“F检验”,用于两个及两个以上样本均值差别的显著性检验。它是通过检验各总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。可以分为单因素方差分析与双因素方差分析。

因素

因素即因子,也就是所要检验的对象。因素变量也称控制变量,根据控制变量的多少,可以把方差分析分为单因素方差分析(一个控制变量)和多因素方差分析(两个及两个以上控制变量)。

组内误差

由于抽样的随机性所造成的误差,即来自水平内部的数据误差,反映一个样本内部数据的离散程度,只含有随机误差。 

组间误差

来自不同水平之间的数据误差,这种误差可能是由抽样本身形成的误差,也可能是由水平本身的系统性因素造成的系统误差,因此,组间误差是随机误差和系统误差的总和,反映不同样本之间数据的离散程度。

随机误差

随机误差是指在因素的同一水平(总体)下,样本各观察值之间的差异,它是由样本本身所形成的误差。

 系统误差

系统误差是因素的不同水平(不同总体)之间观察值的差异,是由于水平本身的系统性因素所造成的。

 总平方和

总平方和是反应全部数据误差大小的平方和,它反应了全部观测值的离散状况。

 组内平方和

是反应组内误差大小的平方和,也称误差平方和或残差平方和,它反映了每个样本内各观测值的离散状况。

 组间平方和

是反应组间误差大小的平方和,也称因素平方和,它反映了样本均值之间的差异程度。

 单因素方差分析

根据所分析的分类型自变量的多少方差分析可分为单因素方差分析和双因素方差分析,当方差分析中只涉及一个分类型自变量时称为单因素方差分析。单因素方差分析研究的是一个分类型自变量对一个数值型因变量的影响。

 双因素方差分析

当方差分析中涉及两个分类型自变量时,称为双因素方差分析。双因素方差分析有两种类型:一个是无交互作用的双因素方差分析,它假定因素A和因素B的效应之间是相互独立的,不存在相互关系;另一个是有交互作用的双因素方差分析,它假定因素A和因素B的结合会产生出一种新的效应。

交互作用

交互作用是指几个因素搭配在一起会对因变量产生一种新的影响的作用。 

  • 31
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
城市应急指挥系统是智慧城市建设的重要组成部分,旨在提高城市对突发事件的预防和处置能力。系统背景源于自然灾害和事故灾难频发,如汶川地震和日本大地震等,这些事件造成了巨大的人员伤亡和财产损失。随着城市化进程的加快,应急信息化建设面临信息资源分散、管理标准不统一等问题,需要通过统筹管理和技术创新来解决。 系统的设计思路是通过先进的技术手段,如物联网、射频识别、卫星定位等,构建一个具有强大信息感知和通信能力的网络和平台。这将促进不同部门和层次之间的信息共享、交流和整合,提高城市资源的利用效率,满足城市对各种信息的获取和使用需求。在“十二五”期间,应急信息化工作将依托这些技术,实现动态监控、风险管理、预警以及统一指挥调度。 应急指挥系统的建设目标是实现快速有效的应对各种突发事件,保障人民生命财产安全,减少社会危害和经济损失。系统将包括预测预警、模拟演练、辅助决策、态势分析等功能,以及应急值守、预案管理、GIS应用等基本应用。此外,还包括支撑平台的建设,如接警中心、视频会议、统一通信等基础设施。 系统的实施将涉及到应急网络建设、应急指挥、视频监控、卫星通信等多个方面。通过高度集成的系统,建立统一的信息接收和处理平台,实现多渠道接入和融合指挥调度。此外,还包括应急指挥中心基础平台建设、固定和移动应急指挥通信系统建设,以及应急队伍建设,确保能够迅速响应并有效处置各类突发事件。 项目的意义在于,它不仅是提升灾害监测预报水平和预警能力的重要科技支撑,也是实现预防和减轻重大灾害和事故损失的关键。通过实施城市应急指挥系统,可以加强社会管理和公共服务,构建和谐社会,为打造平安城市提供坚实的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值