llava部署出现pydantic.errors.PydanticSchemaGenerationError: Unable to generate pydantic-core schema for

在服务器上部署llava时,出现问题

 pydantic.errors.PydanticSchemaGenerationError: Unable to generate pydantic-core schema for <class 'starlette.requests.Request'>. Set `arbitrary_types_allowed=True` in the model_config to ignore this error or implement `__get_pydantic_core_schema__` on your type to fully support it.

pydantic与fastapi版本不兼容

修改pydantic版本没效果,llava需要pydantic为2.x版本

在github上找到了方法

https://github.com/jhj0517/Whisper-WebUI/issues/258

降级fastapi为0.112.4即可

pip install -U fastapi==0.112.4

<think>好的,用户想获取关于如何准备LLaVA-1.1-7B和13B模型权重的官方指导。我需要先回忆一下LLaVA项目的相关信息。根据用户提供的引用[^1],官方文档提到了Model Zoo,里面应该包含所有公开的LLaVA检查点和使用权重的说明。首先,用户需要访问Model Zoo页面,找到对应的模型版本。 接下来,步骤可能包括克隆官方仓库,安装依赖项。用户需要确保环境配置正确,比如Python版本、PyTorch版本以及相关的库如transformers和accelerate。然后,下载预训练的视觉模型和语言模型,可能使用提供的脚本或直接下载链接。 用户可能需要合并视觉和语言模型的权重,这通常需要运行特定的脚本,比如官方提供的转换脚本。例如,使用`python -m llava.model.apply_delta`命令来合并基础语言模型和LLaVA的增量权重。这里要确保路径正确,避免文件找不到的错误。 此外,用户可能会遇到依赖项版本不兼容的问题,需要按照官方指定的版本安装。例如,使用特定版本的torch和transformers库。可能还需要注意CUDA版本是否匹配,以确保GPU加速正常。 最后,验证模型是否加载成功,可以通过运行示例代码或官方提供的测试脚本来检查。如果用户遇到问题,可能需要查阅项目的GitHub Issues或社区讨论,寻找常见问题的解决方案。 用户的需求可能不仅限于准备权重,还可能涉及如何微调模型或使用模型进行推理。因此,生成的相关问题可以包括如何微调LLaVA模型,或者在不同硬件上部署的注意事项,以及如何处理多模态输入等。确保回答准确引用官方文档,并引导用户正确操作,避免常见的配置错误。</think>关于LLaVA-1.1-7B/13B模型权重的准备,请按照以下步骤操作: ### 1. 环境准备 - 克隆官方仓库并安装依赖: ```bash git clone https://github.com/haotian-liu/LLaVA.git cd LLaVA pip install -e . ``` 注意需使用Python ≥3.8,PyTorch ≥2.0和transformers ≥4.31.0 ### 2. 权重下载 - **基础语言模型**: - LLaVA-1.1-7B:下载Vicuna-7B-v1.5权重 - LLaVA-1.1-13B:下载Vicuna-13B-v1.5权重 - **视觉模型**: 使用官方提供的CLIP ViT-L/14-336px视觉编码器 ### 3. 权重合并 使用官方提供的delta权重进行融合: ```bash python -m llava.model.apply_delta \ --base [path/to/vicuna_weights] \ --target [output_directory] \ --delta liuhaotian/llava-v1.1-7b-delta-v0 # 13B则替换为llava-v1.1-13b-delta-v0 ``` ### 4. 验证加载 ```python from llava.model import LlavaLlamaForCausalLM model = LlavaLlamaForCausalLM.from_pretrained("[output_directory]") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值