量子力学第三章-关于力学量随时间演化几大定理

文章讲述了量子力学中力学量随时间的演化,重点讨论了恩费斯托关系式,它描述了力学量期望值的时间变化。此外,还提到了守恒量的概念,即与哈密顿量对易的力学量,其期望值在任何态下都不随时间变化。文章通过一维粒子哈密顿量的例子应用了恩费斯托关系,并介绍了H-F定理,探讨了参数依赖的哈密顿量中本征值对参数的导数。最后,文章阐述了位力定理,这是一个在定态下关于动能和势能平均值的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第三章-力学量(算符)随时间的演化

1.恩费斯托关系式

一个力学量的期望随时间的变化为:
d d t A ( t ) ‾ = 1 i ℏ [ A , H ] ‾ \frac{\mathrm{d} }{\mathrm{d} t} \overline{A(t)} =\frac{1}{i\hbar } \overline{\left [ A,H \right ] } dtdA(t)=i1[A,H]
其证明如下

image-20230519215809163

该式称为恩费斯托(Ehrenfest)关系式。

2.守恒量及其性质

当上面力学量 A ^ \hat{A} A^与哈密顿量对易时,称 A ^ \hat{A} A^为守恒量,守恒量也有一些性质,这里我们简单讨论一下。

  1. 守恒量在任何态下的期望不随时间变化。其证明由恩费斯托关系不难看出。

  2. 守恒量在任何态下的概率分布不随时间变化。其证明如下图所示:

    考虑到 [ A , H ] = 0 \left [ A,H \right ]=0 [A,H]=0,我们可以选择包括 H H H A A A在内的一组力学量完全集,其共同本征态记为 ψ k \psi _{k} ψk(k是一组完备的量子数的简记),即:

    image-20230519203734306

3.恩费斯托关系的运用

我们以一维情况为例,假设粒子的哈密顿量如下:
H = p x 2 2 m + V ( x ) H=\frac{p_{x} ^{2} }{2m} +V(x) H=2mpx2+V(x)
那么我们别对 P x P_{x} Px x x x运用恩费斯托关系,假设粒子处于任意态 ψ ( x , t ) \psi (x,t) ψ(x,t)中。

image-20230519210957809

image-20230519211129493

image-20230519211221413

4.H-F定理

H-F定理讨论在定态中,假设体系的哈密顿量 H H H含有某个参量 λ \lambda λ E n E_{n} En H H H的某一本征值,相应的归一化本征函数(束缚态)为 ψ n \psi _{n} ψn(n为一组完备量子数),则有如下关系式:
∂ E n ∂ λ = ( ψ n , ( ∂ H ∂ λ ) ψ n ) = ⟨ ∂ H ∂ λ ⟩ n \frac{\partial E_{n} }{\partial \lambda } =\left ( \psi _{n} ,\left ( \frac{\partial H}{\partial \lambda } \right )\psi _{n} \right )=\left \langle \frac{\partial H}{\partial \lambda } \right \rangle _{n} λEn=(ψn,(λH)ψn)=λHn
以上称为H-F定理,下面给出证明:

image-20230519212702890

5.位力(virial)定理(三维)

当体系处于定态下,系统的哈密顿量为 H = p 2 2 m + V ( r ) H=\frac{p^{2} }{2m} +V(r) H=2mp2+V(r),关于平均值随时间的变化,有一个有用的定理,其形式如下:
2 T ‾ = r ⃗ . ( ∇ V ) ‾ 2\overline{T} =\overline{\vec{r} .(\nabla V)} 2T=r .(V)
其称为位力定理,其证明如下:

image-20230519215131194

image-20230519215239996

1684504719991)]

[外链图片转存中…(img-OVEHlIkA-1684504719992)]

image-20230519215309407

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值