第三章-力学量(算符)随时间的演化
1.恩费斯托关系式
一个力学量的期望随时间的变化为:
d
d
t
A
(
t
)
‾
=
1
i
ℏ
[
A
,
H
]
‾
\frac{\mathrm{d} }{\mathrm{d} t} \overline{A(t)} =\frac{1}{i\hbar } \overline{\left [ A,H \right ] }
dtdA(t)=iℏ1[A,H]
其证明如下
该式称为恩费斯托(Ehrenfest)关系式。
2.守恒量及其性质
当上面力学量 A ^ \hat{A} A^与哈密顿量对易时,称 A ^ \hat{A} A^为守恒量,守恒量也有一些性质,这里我们简单讨论一下。
-
守恒量在任何态下的期望不随时间变化。其证明由恩费斯托关系不难看出。
-
守恒量在任何态下的概率分布不随时间变化。其证明如下图所示:
考虑到 [ A , H ] = 0 \left [ A,H \right ]=0 [A,H]=0,我们可以选择包括 H H H与 A A A在内的一组力学量完全集,其共同本征态记为 ψ k \psi _{k} ψk(k是一组完备的量子数的简记),即:
3.恩费斯托关系的运用
我们以一维情况为例,假设粒子的哈密顿量如下:
H
=
p
x
2
2
m
+
V
(
x
)
H=\frac{p_{x} ^{2} }{2m} +V(x)
H=2mpx2+V(x)
那么我们别对
P
x
P_{x}
Px与
x
x
x运用恩费斯托关系,假设粒子处于任意态
ψ
(
x
,
t
)
\psi (x,t)
ψ(x,t)中。
4.H-F定理
H-F定理讨论在定态中,假设体系的哈密顿量
H
H
H含有某个参量
λ
\lambda
λ,
E
n
E_{n}
En为
H
H
H的某一本征值,相应的归一化本征函数(束缚态)为
ψ
n
\psi _{n}
ψn(n为一组完备量子数),则有如下关系式:
∂
E
n
∂
λ
=
(
ψ
n
,
(
∂
H
∂
λ
)
ψ
n
)
=
⟨
∂
H
∂
λ
⟩
n
\frac{\partial E_{n} }{\partial \lambda } =\left ( \psi _{n} ,\left ( \frac{\partial H}{\partial \lambda } \right )\psi _{n} \right )=\left \langle \frac{\partial H}{\partial \lambda } \right \rangle _{n}
∂λ∂En=(ψn,(∂λ∂H)ψn)=⟨∂λ∂H⟩n
以上称为H-F定理,下面给出证明:
5.位力(virial)定理(三维)
当体系处于定态下,系统的哈密顿量为
H
=
p
2
2
m
+
V
(
r
)
H=\frac{p^{2} }{2m} +V(r)
H=2mp2+V(r),关于平均值随时间的变化,有一个有用的定理,其形式如下:
2
T
‾
=
r
⃗
.
(
∇
V
)
‾
2\overline{T} =\overline{\vec{r} .(\nabla V)}
2T=r.(∇V)
其称为位力定理,其证明如下:
1684504719991)]
[外链图片转存中…(img-OVEHlIkA-1684504719992)]