第五章—表象与自旋
1.什么是表象
我们知道波函数可以由函数或者向量表示,力学量也可以由某个作用量(例如求导)或者矩阵表示,可以认为量子力学分为波动力学和矩阵力学。所谓表象就是用哪组完备本征函函数(包括向量)来表示波函数与力学量。
2.波动力学表象问题
2.1动量表象与坐标表象波函数
首先我们知道动量表象下的波函数与坐标表象下的波函数是:
2.2坐标表象下的力学量 x ^ \hat{x} x^的本征函数与本征值
2.3动量表象下的力学量 x ^ \hat{x} x^的表达式
2.4动量表象下薛定谔方程推导
首先有完备性:
离散谱
∑
k
∣
k
⟩
⟨
k
∣
=
I
(
单位算符
)
\sum_{k}^{} \left | k \right \rangle \left \langle k \right | =I(单位算符)
k∑∣k⟩⟨k∣=I(单位算符)
连续谱
∫
d
n
∣
n
⟩
⟨
n
∣
=
I
\int dn\left | n \right \rangle \left \langle n \right |=I
∫dn∣n⟩⟨n∣=I
3.矩阵力学表象问题
矩阵力学中表象变换就是线代里面的矩阵变换。
3.1幺正变换
接着我们说一下算符在两个表象下的转换,直接记公式:
F
′
=
S
+
F
S
F'=S^{+} FS
F′=S+FS
其中F是在
∣
ϕ
i
⟩
\left | \phi _{i} \right \rangle
∣ϕi⟩为基的表象中形式,F’是在以
∣
φ
j
⟩
\left | \varphi _{j} \right \rangle
∣φj⟩为基的表象中的形式。
在这里面注意两套不同基矢之间的幺正矩阵 S S S与 S + S^{+} S+怎么写的,还有矩阵元怎么写的,下面就可以处理一些量子力学中的矩阵问题。
3.2轨道角动量l为1的矩阵
,
4.自旋
4.1什么是自旋
自旋是电子的内禀属性,如同电子的质量一般。自旋并不是所谓电子的自我旋转,没有经典图相与之对应,所以电子也有自旋角动量。
4.2泡利矩阵
自旋也有着类似于轨道角动量的矩阵,称为泡利矩阵,自旋与轨道角动量都有通用的升降算符公式。在{ s 2 , s z s^{2} ,s_{z} s2,sz}表象中升降算符公式为:
4.3角动量的叠加
4.4耦合表象与非耦合表象
耦合表象
上面讨论的两个自旋的叠加,在{ s 2 , s z s^{2} ,s_{z} s2,sz }中(s是总自旋角动量),也就是在三重态与单态为基矢的空间中,就是所谓耦合表象。
耦合表象也有升降算符公式:
非耦合表象
在{
s
1
2
,
s
1
z
,
s
2
2
,
s
2
z
,
s_{1} ^{2} ,s_{1z},s_{2} ^{2} ,s_{2z},
s12,s1z,s22,s2z,}表象中,也就是由构成的表象中,称为非耦合表象。