量子力学第二章
算符
1.内积
2.算符的复共轭
3.算符的转置
4.算符的厄米共轭
5.厄米共轭算符
6.对易式与对易关系
7.基本对易式
8.厄米算符性质
- 任何状态下,厄米算符平均值为实数,其逆定理是,在任何状态下平均值为实数的的算符为厄米算符。
- 厄米算符本征值为实数。
- 厄米算符属于不同本征值得本征函数,彼此正交。
下面讨论一些厄米算符
9.共同本征函数
10.不确定关系
两个力学量满足的不确定关系式:
σ
A
σ
B
≥
1
2
∣
[
A
,
B
]
‾
∣
\sigma _{A} \sigma _{B} \ge \frac{1}{2} \left | \overline{\left [ A,B \right ] } \right |
σAσB≥21
[A,B]
将
[
x
,
p
]
=
i
ℏ
\left [ x,p \right ] =i\hbar
[x,p]=iℏ代入可得
σ
x
σ
p
≥
ℏ
2
\sigma _{x} \sigma _{p} \ge \frac{\hbar }{2}
σxσp≥2ℏ
此外也有能量-时间不确定关系: σ t σ E ≥ ℏ 2 \sigma _{t} \sigma _{E} \ge \frac{\hbar }{2} σtσE≥2ℏ
11.自由粒子波函数的归一化问题
见第一章傅里叶变换
12.坐标空间与动量空间的波函数
13.对易力学量完全集CSCO
4289868)]
13.对易力学量完全集CSCO
[外链图片转存中…(img-i7oQuBFL-1684204289868)]