图着色问题 求最少使用颜色数 回溯法

题目4图着色问题

       给定一个无向图G=(V,E),其中V为顶点集合,E为边集合,图着色问题即为将V分为K个颜色组,每个组形成一个独立集,即其中没有相邻的顶点。器优化版本是希望获得最小的K值。

解题思路

本题与前几道题相比最大的不同点是,待分配的对象是可变的,如果是给出固定的颜色种类和一个无向图,球有多少种着色方法时,那就完全和n皇后问题是一种思想了,连数据结构都可以说是一模一样,但是这题求的是最少使用的颜色总数,可以定义一个sum来存放完成一次深度搜索时求得的使用的颜色总数,用mins来记录最小的颜色数。求每个点的颜色时,先用已有的每个颜色来试探,有符合条件的颜色时,sum就不用加一,记录此时sum的值便于回溯,然后递归调用函数求下一个点的颜色,但是如果已有的所有颜色都试探失败,这个时候sum就需要加一。在递归出口比较每次求得的总颜色数,每次都取最小的,进而求出最小的颜色数。

#include<iostream>
using namespace std;
int G[50][50];   //保存无向图
int color[50];   //存放每个点的颜色 
int sum=0;   //需要的颜色总数 
int mins=999999;   //需要的最少的颜色数
int N;   //点的总个数 
//检查点第i+1个点是否能放颜色c
bool check(int i,int c){
	bool flag=true;
	for(int j=0;j<i;j++){
		if(G[j][i]==1){  //前面与第i+1个点直接相连的点 
			if(color[j]==c)   //相连的点有颜色c 
				flag=false;
		}
	} 
	return flag; 
} 
//问题求解 
void dfs(int i){
	if(i>N-1){   //递归出口 
		if(sum<mins)
			mins=sum;   //记录最小颜色数 
	} 
	else{
		//对第i+1个结点,尝试已使用的所有颜色
		int find=0;  //标记能否在已有颜色中找到可以使用的颜色 
		for(int j=0;j<sum;j++){
			if(check(i,color[j])){
				find=1;
				int sum1=sum;
				color[i]=color[j];   //第i+1个点和第j+1个点颜色相同 
				dfs(i+1);		//求下一个点的颜色 
				sum=sum1;   //回溯 
			}
		} 
		if(find==0){   //已有的颜色都不能用 
			sum++;   //总颜色数加一 
			color[i]=sum;
			dfs(i+1);   //求下一个点的颜色 
		} 
	}
} 
int main(){
	cin>>N;
	for(int i=0;i<N;i++){
		for(int j=0;j<N;j++){
			cin>>G[i][j];
		}
	}
	dfs(0);
	cout<<"最少颜色数: "<<mins; 
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值