ERA5-Land 逐小时数据_累积值(如辐射数据)处理的注意事项

本文详细介绍了如何处理和转换ERA5-Land逐小时数据中的累积辐射量,包括累积变量的定义、如何将累计值转换为瞬时值,以及计算日平均瞬时辐射的方法。通过实例展示了1小时和1天内平均瞬时辐射的计算,并提出了利用天黑期间辐射量不变的特性来提取全天累积量的技巧,避免因跨年数据处理带来的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.累积变量定义

2.累计值转换为瞬时值

2.1计算1小时内的平均瞬时辐射

2.2计算1天内的平均瞬时辐射

3.提取全天累积量的技巧


1.累积变量定义

ERA5数据文档中对“累积变量”的定义是:在特定时间段内聚合的变量

由于累积变量以不同的方式存储在不同的数据集中,因此正确解释它们很重要。

        以ERA5-Land 逐小时数据 为例,该数据集的 降水辐射数据 就是累积变量,而非瞬时值。

        因此,本文将以辐射数据为例,介绍ERA5-Land逐小时数据集,累积变量的单位换算以及转换为瞬时值的操作流程,和注意事项。


2.累计值转换为瞬时值

根据官方文档(https://confluence.ecmwf.int/pages/viewpage.action?pageId=197702790

某日

01:00时的辐射变量数值等于从00:00到01:00时刻的累积;

02:00时的辐射变量数值等于从00:00到02:00时刻的累积;

……

由此,次日00:00时的辐射变量数值等于上一日全天24h的辐射量的累积

辐射数据的原始单位为 (j*m-2),辐射常用其瞬时单位(w*m-2),

单位换算:1j = 1W*1s


2.1计算1小时内的平均瞬时辐射

        如前文所说,用1小时数据计算瞬时值,需要分理出一个小时内辐射量的累积值;

01:00时的数值本身就是1小时累积值,因此不需要处理;

其他时刻,均需要用当前时刻数值,减去上一时刻数值才能得到一小时内的辐射值,

得到一小时内辐射累积值,再除以时间(3600s),即可获得瞬时值。


2.2计算1天内的平均瞬时辐射

        如前文所述,00:00时的数值 即为前一天全天的辐射累计值,

因此要求某日的日平均瞬时辐射,需用次日00:00时刻数值,除以时间(86400s)。


3.提取全天累积量的技巧

        如第二节所述,当日总的辐射累积值,他等于第二天00:00的数值,

举几个实际应用中可能会产生疑问的地方:

        如果我编写程序逐年处理数据,一次读取一年的文件,01月01日,他当天总辐射量我用01月02日的00:00数据表示,以此类推,12月31日当天总辐射量要用次年的数据了,而我为了这一天的数据要去再读一整个文件,是不是大费周章?而万一没有第二年数据,那岂不是要逼死强迫症?

      我知道你很急,但是你先别急。

         众所周知,我们生活的地球,他有一个神奇的特性叫做天黑。天黑是因为没太阳,换言之,天黑的时候,辐射量的累计值是不会增加的。我们看上图,从11时(UTC)以后,辐射量的累计值不再增加。(上图数据范围为我国华北)

        也就是说,对于某地而言,辐射量连续保持不变的数值即等于当日的总辐射量。

        上述性质应该还有点用,这里开个坑,这两天找个机会填了它~ e_e~


本文以辐射量为例,其他累积量如降水处理大同小异,不再赘述。

### ERA5 太阳辐射数据下载与使用方法 #### 数据简介 ERA5 是欧洲中期天气预报中心(ECMWF)提供的第五代全球再分析数据集,提供了高分辨率的大气、陆地和海洋变量。其中,太阳辐射相关的参数可以通过多种方式访问和下载。 #### 可用的太阳辐射相关变量 在 ERA5ERA5-Land 中,涉及太阳辐射的主要变量包括但不限于: - 地表向下短波辐射通量(Surface downward shortwave radiation flux) - 地表净短波辐射通量(Net surface shortwave radiation flux) - 总天空覆盖下的表面太阳能资源(Total sky cover solar resource at the surface) 这些变量可以在 Copernicus Climate Data Store (CDS)[^1] 或 Google Earth Engine (GEE)[^2] 上找到。 --- #### 方法一:通过 CDS 下载 ERA5 太阳辐射数据 Copernicus 提供了一个官方平台用于下载 ERA5 数据。以下是具体操作流程: 1. **注册账户** 访问 [Copernicus Climate Data Store](https://cds.climate.copernicus.eu/) 并创建一个免费账户。 2. **选择产品** 在搜索框中输入关键词 `ERA5`,然后筛选出感兴趣的产品,例如 “Reanalysis-era5-single-levels”。 3. **配置请求参数** - 时间范围:指定所需的时间区间(如 2020 至 2023)。 - 空间区域:定义地理边界(纬度和经度范围)。 - 参数列表:勾选与太阳辐射相关的变量,比如“surface downwards short-wave radiation flux”。 4. **提交并下载** 配置完成后点击“Submit”,等待任务完成即可下载 NetCDF 文件或其他支持格式。 --- #### 方法二:利用 GEE 获取 ERA5 太阳辐射数据 Google Earth Engine 提供了一种便捷的方式加载和可视化 ERA5 数据,无需本地存储大量文件。 1. **安装与登录** 如果尚未安装 GEE API,请先按照文档说明设置环境,并授权访问权限。 2. **脚本示例** 下面是一个简单的 Python 脚本,展示如何提取特定地区的 ERA5 太阳辐射数据: ```python import ee ee.Initialize() # 定义研究区 aoi = ee.Geometry.Rectangle([70, 15, 140, 55]) # 华北地区经纬度范围 # 加载 ERA5 数据集合 era5_heat = ee.ImageCollection('projects/sat-io/open-datasets/era5heat')\ .filterDate('2023-01-01', '2023-01-31')\ .select('ssr') # 导出为图像或表格 task = ee.batch.Export.image.toDrive({ 'image': era5_heat.mean(), 'description': 'ERA5_Solar_Radiation', 'scale': 27830, 'region': aoi }) task.start() ``` 此处使用的 `"ssr"` 表示地表接收到的短波辐射通量[^2]。 --- #### 注意事项 对于某些累积型变量(如辐射总量),需要注意其计算逻辑以及时间步长的影响。例如,在夜间时段由于缺乏日照条件,累积值通常保持不变[^3]。因此,在实际应用前应仔细阅读元数据描述,确认单位及时序一致性。 此外,如果需要更全面的历史气候资料或者更高精度的地表过程模拟,则可以考虑申请完整的 ERA5-Land 数据包[^4]。 ---
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值