给你一个整数数组 nums ,你可以对它进行一些操作。
每次操作中,选择任意一个 nums[i] ,删除它并获得 nums[i] 的点数。之后,你必须删除 所有 等于 nums[i] - 1 和 nums[i] + 1 的元素。
开始你拥有 0 个点数。返回你能通过这些操作获得的最大点数。
思路:
首先,我们先明确一个概念,就是每个位置上的数字是可以在两种前结果之上进行选择的:
如果你不删除当前位置的数字,那么你得到就是前一个数字的位置的最优结果。
如果你觉得当前的位置数字i需要被删,那么你就会得到i - 2位置的那个最优结果加上当前位置的数字乘以个数。
以上两个结果,你每次取最大的,记录下来,然后答案就是最后那个数字了。
如果你看到现在有点迷糊,那么我们先把数字进行整理一下。
我们在原来的 nums 的基础上构造一个临时的数组 all,这个数组,以元素的值来做下标,下标对应的元素是原来的元素的个数。
举个例子:
nums = [2, 2, 3, 3, 3, 4]
构造后:
all=[0, 0, 2, 3, 1];
就是代表着 22 的个数有两个,33 的个数有 33 个,44 的个数有 11 个。
其实这样就可以变成打家劫舍的问题了呗。
我们来看看,打家劫舍的最优子结构的公式:
dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);
再来看看现在对这个问题的最优子结构公式:
dp[i] = Math.max(dp[i - 1], dp[i - 2] + i * all[i]);
class Solution {
public int deleteAndEarn(int[] nums) {
if (nums == null || nums.length == 0) {
return 0;
} else if (nums.length == 1) {
return nums[0];
}
int len = nums.length;
int max = nums[0];
for (int i = 0; i < len; ++i) {
max = Math.max(max, nums[i]);
}
// 构造一个新的数组all
int[] all = new int[max + 1];
for (int x : nums) {
all[x] ++;
}
int[] dp = new int[max + 1];
dp[1] = all[1] * 1;
dp[2] = Math.max(dp[1], all[2] * 2);
// 动态规划求解
for (int i = 2; i <= max; ++i) {
dp[i] = Math.max(dp[i - 1], dp[i - 2] + i * all[i]);
}
return dp[max];
}
}