概要
通过以下实例,你将学会如何查看神经网络结构并打印出训练参数。
流程
- 准备一个简易的二分类数据集,并编写一个单层的神经网络
train_data = np.array([[1, 2, 3, 4, 5],
[7, 7, 2, 4, 10],
[1, 9, 3, 6, 5],
[6, 7, 8, 9, 10]])
train_label = np.array([1, 0, 1, 0]) #标签与样本一一对齐
""" 定义一个单层的神经网络 """
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(1, activation=None)
])
- 编译,训练,并保存模型
model.compile(
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
optimizer='adam'
)
model.fit(train_data,
tra

最低0.47元/天 解锁文章
1639

被折叠的 条评论
为什么被折叠?



