对《论文写作》课程的总结

目录

1.课程内容

2.个人学习感悟

2.1论文前提

2.1.1什么是学术论文?

2.1.2怎么写学术论文?

2.2.3什么时候写学术论文?

2.2 题目

2.3摘要和关键词

2.4引言和相关工作

2.5理论部分

2.6实验部分

2.6.1内部比较

2.6.2外部比较

2.7参考文献

2.论文中其他注意事项

3心得体会


1.课程内容

在本学期上了闵帆老师的《论文写作》这一门课,在课程中闵帆老师告诉了我们如何进行英文论文的写作,在课程中老师首先进行了一些论文写作的前提准备比如学术论文的基本情况,编译软件的选择等,其次,再讲解了一篇论文的各个组成部分:题目、摘要、关键词、引言、相关工作、理论部分、实验以及参考文献等的写作要求以及注意事项等。具体的内容可以闵帆老师的博客上查看

博客地址:闵帆的博客

2.个人学习感悟

 在学习了该课程之后,收获到了许多,在刚入组时,导师就要求我学习以下闵帆老师的论文写作课程,果然上完第一节课之后首先修正的第一个错误观念就是word可编辑一切,在论文写作方面,要尽量不使用word进行创作,要使用专业的论文编辑器LaTex等。接下来将从论文的组成部分为小节,依次进行总结:

2.1论文前提

在该门课的第一节课上,闵帆老师提出了,我记得最清楚也是学术人最该知道三个小问题:

2.1.1什么是学术论文?

学术论文是一种学术性的文章,它通常用于描述和解释新的研究成果、理论或观点。学术论文的目的是向学术界展示作者的研究成果,并与其他学者进行交流和讨论。学术论文通常包括摘要、引言、方法、结果和讨论等部分,并且需要遵循一定的格式和规范。

用闵帆老师的话讲,学术论文是:

  • 对研究工作的阶段性总结

单篇论文的内容不需要太多, 创新点一两个就够. 如果有一系列工作, 就写一系列论文. 但不应该强行灌水, 特别是已经有 10+ 学术论文的学者.

  • 科研八股文

每个部分内容有固有的要求. 方便读者找到自己需要的内容. 论文不需要文采, 只需要正确的内容放在正确的位置.

  • 结构清晰的表格

其中大表 (节 Section) 套着小表 (小节 Subsection) 以及小小表 (句子 Sentence). 没有最八股, 只有更八股.

2.1.2怎么写学术论文?

  • 读文献, 总结模板, 在自己的模板上写

计算机方面, 需要查阅顶刊如 Science, Artificial Intelligence (AI), IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 顶会如 the Association for the Advance of Artificial Intelligence (AAAI) 50 篇以上的论文.

  • 使用别人总结的模板写 (如本贴系列)

2.1.3什么时候写学术论文?

学术论文的写作并没有限制在哪个阶段才能写,只要你有idea,你就可以进行学术写作,更具体的说学术论文通常在完成研究项目或课程作业后撰写。以下是一些常见的情况:

  1. 毕业论文:本科生、研究生或博士生在完成学位论文时需要撰写学术论文。
  2. 研究报告:研究人员在完成实验或调查后需要撰写学术论文来总结研究成果。
  3. 会议论文:学者参加学术会议时需要提交学术论文以展示自己的研究成果。
  4. 期刊论文:学者将研究成果发表在学术期刊上时需要撰写学术论文。

2.2 题目

首先,在我上这门课之前,没有意识到一篇论文的题目是那么的重要与讲究,对于我的理解题目只要说明清楚文章的主题就行了,是一个不起眼的部分,但是闵帆老师在课堂中单独将题目作为了一次讲解的内容,如果你自己的论文如果想被投稿的期刊接收或者发表,那么论文的题目也是需要仔细推敲,反复修改的,也是有许多的门道,下面是闵帆老师对于论文题目部分的提炼:

  • 必须有吸引力

不炫的论文题目审稿人看了没兴趣, 不炫的博客题目阅读量肯定不高.
对于计算机方面论文而言, 应该写出自己提出的新问题或新方法. 新问题应该有意义而且有挑战性, 新方法则应该高效或准确.

  • 必须易于理解

术语和其它词汇应该在该领域内常用, 不应该要求读者借助词典才能理解.

  • 应该易于检索

流行的术语有助于被别人搜索到, 也能帮助提高论文的被引频次. 对于一个学者而言, 论文引用次数比论文数量更重要.

  • 长度最好控制在 40-60 个字母之间

越短表示创新性越高, 如rough sets, fuzzy sets 等等. 如果你敢写这么短的题目而且能被录用, 也不需要从本贴学到任何东西了.
越长表示限定越多, 适用范围越窄, 创新性越低, 读者也就没啥兴趣了.

  • 尽量不使用 based on

如果这样写, 读者会觉得该论文只是已有方法一个简单的扩展, 或者简单的应用. 有些中文期刊明确要求论文题目不要使用 “基于”, 因为这种题目泛滥.

  • 使用 through, with 等来表示技术
  • 如果主要贡献为算法, 题目的缩写就应该为算法的名称

例子:

  • Frequent pattern discovery with tri-partition alphabets

含空格, 共 56 个字符.
提出了一个新的问题, 其中频繁模式挖掘是更大的问题, 三分符号表则是本问题的特色.

  • Frequent state transition patterns of multivariate time series

含空格, 共 63 个字符.
针对新的数据 (多变量时序), 提出了新问题 (频繁状态转移模式).

  • Test-cost-sensitive attribute reduction

40 个字符, 更短更有力. 引用次数已经超过 300.
提出一个新的问题.

  • Cost-sensitive active learning through statistical methods

59 个字符.
问题有一定新意: Cost-sensitive active learning, 方法也有创新: statistical methods
算法的缩写: CATS

2.3摘要和关键词

摘要部分(约150个单词):通常由现有工作、论文结果、实验结果组成,通常写大约10个句子,由问题及其重要性、现有工作(现有工作的限制)、论文的主要内容、算法的三个方面/技术/阶段
实验设置以及结果(文章贡献)组成。关键词部分(3—5个词):按字母表升序排序。关键词应该涵盖论文的各个方面,包括研究方法、研究对象、研究结果等。

其注意事项在老师的博客中提到有:

  • 问题及其重要性

本句可以说明问题所属的领域, 解释最重要的概念, 或者强调问题的重要性.
– 反例: Attribute reduction is an important issue in data mining.
分析: 只会说 important, 干巴巴的. 而且 important 没有任何特色, 任何论文都可以说自己的问题 important.
– 正例: Recommender systems guide their users in decisions related to personal opinions about items.
分析: 针对性强, 有营养.

  • 已有工作

本句可以描述该问题的流行解决方案. 如果说我们做研究是 “站在巨人的肩膀上”, 本句就描述巨人长什么样子.

  • 已有工作局限性

本句以 However 开头, 需要注意
– 指责不要太强烈, 要尊重别人的劳动;
– 本句干的事情是挖坑, 要保证自己的方法能把坑填上;
– 实在不行也可以不写本句, 但这样显得没有底气.

  • 本文工作

– 以 In this paper 开始
– 是题目的扩展
– 出现算法的缩写
– 可以超过 20 个单词, 这也是全文唯一可以超过 20 个单词的句子

  • 本文方法的第 1 个技术/步骤/方面/优势/贡献
  • 本文方法的第 2 个技术/步骤/方面/优势/贡献
  • 本文方法的第 3 个技术/步骤/方面/优势/贡献

如果不能扯出 3 个方面, 论文的工作量就显得不够

  • 实验设置

给出数据的领域、来源、数量.

  • 实验结果

提高了准确性、效率等等.

  • 提升

吹嘘一下论文的意义: 为该领域打开一扇门之类

2.4引言和相关工作

在以前,读一篇论文时对于引言和相关工作,我一般都不会认真看,粗略的看过去,感觉大家的相关工作部分都差不多,可以照搬,可是上了课之后才发现引言和相关工作是至关重要,引言包含了论文的整个组织结构,审稿人通常在阅读完引言后决定是否接收论文,而读者通常也会在阅读引言后决定是否引用该篇论文。而相关工作部分则主要对现有的研究现状进行介绍和总结,包括描述相关工作的进展以及不足。这部分需要展开说,自己找一个逻辑把叙述的文献串起来。相关工作是对已有研究的批判性分析,以便找出研究的空白,为自己的研究提供理论基础。在老师的博客中也提到了相关的方法:

  • 每篇论文都应有文献综述

表示对前人工作的尊重, 我们是站在巨人的肩头上
当读者不清楚某些技术的细节时便于查阅

  • 可以在不同的地方描述

引言中: 一般描述得比较简略
第 2 节专门的 Related work: 描述得比较详细
实验之后: 不想破坏自己论文的完整性, 特别是有 Preliminaries 一节时, 可考虑放到这里
在引言中的描述与第 2 节中的描述不要简单的重复. 换言之, Introduction 和 Related work 应该统一布局, 而不能相互打架

  • 文献需要进行分门别类的介绍

便于读者理解你这项工作的位置. 例: 主动学习有两个流派: 基于不确定性与基于代表性, 本文工作为后者.
有时会大类套小类, 逐步细化
这样的综述才有目的、有营养

  • 参考文献的引用一般仅仅是一种附属品

先写一个完整的句子, 再把参考文献的引用加上去. 例: Uncertainty sampling approaches [1,2] construct a classifier to determine which labels should be queried.

  • 不应将参考文献的引用作为句子的主语、宾语等

这种情况下, 你就失去了自己的观点, 而以其它作者的观点为主: Min et. al [6] propose … Zhang et. al [7] augue that
读者从你这个文献综述里面看不到有深度的“综合论述”
容易出现连续多个单词与相应文献句子相同, 查重也会有问题
为了凑篇幅而综述, 肯定不靠谱

  • 以年份为主线的综述也不值得提倡

还是堆砌的感觉

  • 不要一次性引用太多文献

一次不要超过 3 篇, 否则又是堆砌的感觉. 如: Uncertainty sampling approaches [1,2,3,4,5], 让读者觉得你根本没有给每篇参考文献足够的尊重, 就好像给大家一个合照了事儿
即使与这个位置相关的参考文献很多, 也应该想办法放在不同的位置

  • 不提倡全句引用

如果实在要引用, 应在原句外面套上双引号, 否则就是学术不端. 如: Eintein pointed out that “xxx.”

  • 合理评述相关工作的优缺点

优点是你选择跟随性工作的原因
缺点是你论文工作的动机
在谈到优点时可以使劲夸, 但也不要用口语; 说到缺点时要中肯, 也要客气, 很可能文献作者也是你这篇论文的审稿人

2.5理论部分

在理论部分,针对闵帆老师讲的内容,我认为最重要的是数学公式的书写,因为自己是网络空间安全方向的,所以针对自己的论文,因为方案中涉及到密码算法的定义与书写,因此文中会出现大量的数学公式,之前自己更普遍的是使用mathtype进行公式编辑,但是有一个致命的问题就是乱码的问题,通过此课首先知道了使用Latex进行数学公式的编写,下面是Latex常用数学符号总结:

 在书写时也要注意以下几点:

  1. 不要对式子、符号进行额外的、特殊的处理,包括强行增加空格、花括号等.
  2. 数学表达式的处理是 Latex 相较于 Word 非常重要的优势. 严禁先用 Word 里面的公式编辑器写数学式子, 再转到 Latex. 这样很容易出现第 1 项所描述的问题. 另外, 数学符号、表达式所涉及的控制命令有限, 很快就可以掌握.
  3. 一般的变量 (标量为) 斜体的, 而常数和运算符是正体. 在 Latex 中你不用考虑那么多, 直接用 $ 符号将它们括起来就行了. 如 f ( x ) = x 2 + 1 f(x) = x^2 + 1的源码为 $f(x) = x^2 + 1$. CSDN、Github 支持Markdown 格式, 即 .md 文件, 也可以这样写式子.
  4. 不同字体的同一个字母表示不同的涵义. 如 x \mathbf{x}x, x xx, x 是三个完全不同的符号. 因此, 应检查符号系统的一致性 (初学者很难做好).
  5. 集合、数组、向量应使用粗体. 如 X \mathbf{X}X (源码 $\mathbf{X}$) 或 X \bm{X}X (源码 $\bm{X}$). 矩阵转置使用 \mathsf{T}, 而不是 \mathrm{T} 或 \top.
  6. 如果在文字中的数学表达式太长, 就可以超过页面右边界. 为此, 应将它进行切分. 例如 $K = \{n_1, n_2, \dots, n_k\}$ 可替换为 $K$ = \{$n_1$, $n_2$, \dots, $n_k$\}, 这样 Latex 就可以对它进行自动分行了.
  7. 数学式子是句子的一部分, 因此它们应该有相应的逗号、分号、句号. 如果使用逗号, 后面的 where 应该顶格写, 以表示在同一行. 还应以小写开头, 表示是句子的后面部分. 以下是几个常见的例子, 特别注意符号与大小写.
  8. 数学式子里面的文字应该用 \mathrm{otherwise} 这种方式括起来.

2.6实验部分

实验部分是论文中非常重要的一部分,它对于验证研究假设、证明研究结论以及评估研究成果的有效性和可靠性都起着至关重要的作用。以下是阐述论文中实验部分重要性的几个方面:

  1. 验证研究假设:实验部分可以通过对研究对象进行实证研究来验证研究假设的正确性。通过实验结果的分析,可以确定研究假设是否成立,从而为后续的研究提供基础.
  2. 证明研究结论:实验部分可以通过对研究对象进行实证研究来证明研究结论的正确性。通过实验结果的分析,可以确定研究结论是否可靠,从而为后续的研究提供支持.
  3. 评估研究成果的有效性和可靠性:实验部分可以通过对研究对象进行实证研究来评估研究成果的有效性和可靠性。通过实验结果的分析,可以确定研究成果是否具有实际意义和应用价值,从而为后续的研究提供指导.

针对实验部分,首先是数据集:通常数据集越多越有说服力;首选较大数据集(拥有一些超过10,000个实例和100个属性的数据集是很好的;相同结果不能同时显示在图形和表格中。显示每个参数对实验结果的影响以及主要方法相对于其他变体的优势与现有经典/先进的方法进行比较,分析其优劣.

在闵帆老师的博客中,实验部分着重强调的是对比,数据集越多,越广,实验的可信度更高,可以和自己的参考文献中的方案进行对比,同时给出了实验比较可以从哪些方面进行,比如:

2.6.1内部比较

  • 展示参数变化所导致的性能变化.

二维图一次只能展示一个参数和一个性能指标. 因此, 如果有很多参数, 就只能讨论最重要的几个, 否则图太多.

  • 展示主要方案与其变种相比的优势.

有时候我们有好几种可选方案, 通过比较, 可以获得最佳那个. 只有在国内获得冠军, 才出去参加奥运会.

2.6.2外部比较

  • 需要比较经典方案, 基准方案, 最先进的方案.
  • 很多时候使用柱状图.
  • 如果数据太多, 用表格就比图合适.
  • 如果要把参数影响, 数据集大小影响也表现出来, 就只有用折线图.
  • 最重要的比较放在最后.
  • 要有足够的文字进行分析, 不能让读者自己去观察.
  • 并不需要在所有数据集上击败其它方案.
  • 在分析自己方案优势之余, 也应该分析它的劣势, 否则审稿人不干. 因为机器学习的基本规律就是 No free lunch, 即一个方案既然有优点, 就肯定有缺点. 既然有擅长的数据/指标, 也就有不擅长的数据/指标.

2.7参考文献

LaTex提供了 bib 文件进行参考文献的管理, 极大地减轻了作者的负担. 它也是 Latex 相较于 Winword 的第二大优势. 每篇参考文献只需要写 7-8 行, 如:

@ARTICLE{MinZhang2020Frequent,
    author    = {Fan Min and Zhi-Heng Zhang and Wen-Jie Zhai and Rong-Ping Shen},
    title     = {Frequent pattern discovery with tri-partition alphabets},
    journal   = {Information Sciences},
    year      = {2020},
    volume    = {507},
    number    = {1},
    pages     = {715--732},
    doi       = {10.1016/j.ins.2018.04.013}
}

@INPROCEEDINGS{MinCai2007Dynamic,
    author    = {Fan Min and Hong-Bin Cai and Qi-He Liu and Zhong-Jian Bai},
    title     = {Dynamic discretization: a combination approach},
    booktitle = {ICMLC},
    year      = {2007},
    pages     = {3672--3677}
}

注意事项:

  1. 千万不要直接使用网上的 bibitem. 有些同学说: “我的 bibitem 是从网上直接拷贝的, 怎么会有错呢?” 这句话直接把我点爆. 正确的做法是: 使用一个正确的模板 (例如上面给这个), 然后把文献的内容填进去, 这样可以避免多数问题.
  2. 将等号进行列对齐. 这和我们写程序一样, 需要良好的习惯: 保证格式正确. 否则会隐藏一些错误. 实际上, Latex 文件就是程序.
  3. 名字要有意义. 如 MinZhang2020Frequent 包含了前两个作者姓氏、论文发表年份、标题中的一个关键词. 必须保证不同的参考文献具有不同的名字.
  4. 名在前, 姓在后. “Fan Min” 不要写成 “Min, Fan”, 虽然 Latex 也认这个, 但从统一风格的角度, 我不认.
  5. 作者名不要缩写成 “F Min” 或 “Fan Min”. Latex 自己会进行必要的转换.
  6. 注意题目的大小写, 可以用花括号强制设置. 如 “TACS: Three-way active learning through clustering selection” 应写为 “{TACS: T}hree-way active learning through clustering selection”, 否则 Latex 很可能给你转换成 “Tacs: three …”. 同时注意不要使用 “{TACS: T}hree-way {A}ctive {L}earning through {C}lustering {S}election” 这种过度的控制, 模板会进行大小写控制的.
  7. 期刊的名字按照正常方式写即可. 有时候编辑会把 Information Sciences 缩写为 Inf. Sci. 作者一般可以不管.
  8. 会议名如果使用简称, 就不要再写全称. 事实上, 级别高的会议, 大家都知道其简称. 级别低的会议最好别引用.
  9. 为了保证格式的正确性, 应检查生成的 pdf 文件. 偶尔还会根据投稿期刊的要求来进行 bibitem 的修改.

3.论文中其他注意事项

  1、不要写太多“新“的展望在你的文章中,要尽最大努力专注于你的核心工作

  2、文章要写的简洁易读,清楚的展示自己的想法,不要去混淆读者

  3、不要过分夸大自己的工作,这可能将会引起读者/审稿人对你的批判

  4、在文章中不要过分的批判别人的方法,要客观理性的进行分析其优劣

  5、作为初学者,要多参考别人的文章,才更有说服力

  6、要多读多写,以好的论文为样本,模拟但不复制

  7、写完文章之后应多读几遍,减少文章不必要的低级的语法错误

  8、对某些专业英语词汇,要使用正确的缩写格式

  9、注意文章中慎用的词汇以及应用语序,如Have’t 与 Don’t、And、Easy、Simple、Solve、Nolve、Only、Prove等

4.心得体会

 1、多读文献:读懂论文的研究逻辑和创新思路,建立此研究与其他研究之间的关系,找出文献中研究的思路和技术路线。

  2、写论文时不要生搬硬套,要多理解其他作者论文的书写逻辑,把它记入脑海中,然后不断练习。

  3、读文献要建立在对论文结构框架的理解基础之上,这样在你阅读时才能够解构论文,知道从哪去找需要的信息。

  4、写论文原则:①新意 ②过程要严谨 ③语言风格要符合要求

  5、在看英文文献时,将好句子做好整理记录,知道怎样讲一个中文句子用英文明确的表达出来。

  总之,通过此次的论文写作课程,让我懂得了写论文不是一蹴而就的事情,它是一个需要长期积累漫长的过程,日后还需投入更多的时间和精力来做好科研工作,看论文时要多思考多总结,学习别人的写作方法和写作经验,理解他们的研究方法和研究思路,为自己今后的科研生涯奠定基础。
  最后,感谢闵凡老师成为我今后写作生涯的指路人,您的悉心教导我将牢记在心,在今后的学习和工作中,我将继续努力,争取取得更好的成绩!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值