MUSIC算法学习笔记(注重逻辑推导和理解,非严格的数学推导)下篇

上篇介绍了music算法的来源和提出背景,最后的问题是“music算法是如何找出  的

下篇将正式开始music算法。(由于数学公式不便于输入,下篇手写呈现)

        说明:以上仅代表个人学习过程中对music算法的简单理解,如有错误的地方敬请指出,我将及时改正。之后还会继续深入学习music算法的严格逻辑推导过程,以及music相关算法的研究。

音乐生成算法通常基于深度学习,特别是循环神经网络(RNNs),如LSTM(长短时记忆网络)或Transformer架构,用于创作音乐。这些算法的基本原理可以概括为以下步骤: 1. **输入表示**:首先,将音符、旋律或和弦序列转换成数字表示,如MIDI编码或其他音高、节奏数据。 2. **模型训练**:使用大量的音乐数据集作为输入和期望的输出,训练模型学习音乐结构和模式。常见的损失函数如MSE(均方误差)或交叉熵,旨在最小化预测结果与实际音序的差异。 3. **生成过程**:通过设置一个初始状态或随机种子,模型开始预测下一个音符或序列。它根据之前生成的部分和学习到的概率分布进行选择,生成新的音符。 4. **采样策略**:有多种策略来控制生成的音乐风格,如温度调整(改变概率分布的稀疏度)、束搜索(限制探索范围)等。 **详细推导**: 对于基于RNN的音乐生成,我们可以考虑一个简单的LSTM单元。假设我们有一个隐藏状态`h_t`和细胞状态`c_t`,它们会根据当前输入`x_t`和上一时刻的状态更新: ``` i_t = σ(W_i * [x_t; h_{t-1}]) f_t = σ(W_f * [x_t; h_{t-1}]) o_t = σ(W_o * [x_t; h_{t-1}]) c_t' = f_t * c_{t-1} + i_t * tanh(W_c * [x_t; h_{t-1}]) h_t = o_t * tanh(c_t') ``` 这里,`σ()`是sigmoid激活函数,`*`表示点乘,`W`是权重矩阵。生成过程中,我们会从最终的隐藏状态`h_T`开始,不断预测下一个时间步的`p(x_{T+1}|x_1...x_T)`,然后基于这个概率分布选择下一个音符。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值