一道
b
f
s
的好题
\sout{一道bfs的好题}
一道bfs的好题
一看题目就是
b
f
s
,但是细节很多
\small{一看题目就是bfs,但是细节很多}
一看题目就是bfs,但是细节很多
机器人是在
格点
上的,障碍物则是在
格子
里的,要注意障碍物位置并不是对应格点位置,而是一个障碍物占了
4
个格点
机器人是在\mathbf{格点}上的,障碍物则是在\mathbf{格子}里的,要注意障碍物位置并不是对应格点位置,而是一个障碍物占了4个格点
机器人是在格点上的,障碍物则是在格子里的,要注意障碍物位置并不是对应格点位置,而是一个障碍物占了4个格点
for(int i = 1; i <= n; i ++)
for(int j = 1; j <= m; j ++){
int p;
cin>>p;
if(p == 1){
map[i][j] = 1;
map[i][j - 1] = 1;
map[i - 1][j] = 1;
map[i - 1][j - 1] = 1;
}
}
然后是方向问题
\mathbf{然后是方向问题}
然后是方向问题
用两个常量数组来存储方向,通过模来控制转向
用两个常量数组来存储方向,通过模来控制转向
用两个常量数组来存储方向,通过模来控制转向
int xx[4] = {0,1,0,-1}; //E,S,W,N
int yy[4] = {1,0,-1,0};
(d + 1) % 4; //右转
(d + 4 - 1) % 4; //左转
要注意 b f s 状态的储存,一个点的状态有 坐标和方向 ,用一个三维数组存储 要注意bfs状态的储存,一个点的状态有\mathbf{坐标和方向},用一个三维数组存储 要注意bfs状态的储存,一个点的状态有坐标和方向,用一个三维数组存储
int num[55][55][5]; //x轴,y轴,方向
要注意机器人是圆形的,所以实际上可活动范围只有 1 ∼ n − 1 , 1 ∼ m − 1 要注意机器人是圆形的,所以实际上可活动范围只有1\sim{n-1},1\sim{m-1} 要注意机器人是圆形的,所以实际上可活动范围只有1∼n−1,1∼m−1
附上代码 附上代码 附上代码
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
int xx[4] = {0,1,0,-1};
int yy[4] = {1,0,-1,0};
queue<int> direct;
queue<int> q1;
queue<int> q2;
queue<int> f;
int n,m,x2,y2;
int map[55][55];
int mapp[55][55];
int num[55][55][5];
void bfs(){
while (!q1.empty()){
int x = q1.front(),y = q2.front();
int d = direct.front();
int s = f.front();
if(x == x2 && y == y2){
cout<<s<<endl;
exit(0);
}
if((x + 1 * xx[d] < n) && (x + 1 * xx[d] > 0) && (y + 1 * yy[d] < m) && (y + 1 * yy[d] > 0) && (map[x + 1 * xx[d]][y + 1 * yy[d]] == 0) && (num[x + 1 * xx[d]][y + 1 * yy[d]][d] == 0)){
q1.push(x + 1 * xx[d]);
q2.push(y + 1 * yy[d]);
direct.push(d);
f.push(s + 1);
num[x + 1 * xx[d]][y + 1 * yy[d]][d] = 1;
}
if((x + 2 * xx[d] < n) && (x + 2 * xx[d] > 0) && (y + 2 * yy[d] < m) && (y + 2 * yy[d] > 0) && (map[x + 2 * xx[d]][y + 2 * yy[d]] == 0) && (num[x + 2 * xx[d]][y + 2 * yy[d]][d] == 0) && (map[x + 1 * xx[d]][y + 1 * yy[d]] == 0)){
q1.push(x + 2 * xx[d]);
q2.push(y + 2 * yy[d]);
direct.push(d);
f.push(s + 1);
num[x + 2 * xx[d]][y + 2 * yy[d]][d] = 1;
}
if((x + 3 * xx[d] < n) && (x + 3 * xx[d] > 0) && (y + 3 * yy[d] < m) && (y + 3 * yy[d] > 0) && (map[x + 3 * xx[d]][y + 3 * yy[d]] == 0) && (num[x + 3 * xx[d]][y + 3 * yy[d]][d] == 0) && (map[x + 1 * xx[d]][y + 1 * yy[d]] == 0) && (map[x + 2 * xx[d]][y + 2 * yy[d]] == 0)){
q1.push(x + 3 * xx[d]);
q2.push(y + 3 * yy[d]);
direct.push(d);
f.push(s + 1);
num[x + 3 * xx[d]][y + 3 * yy[d]][d] = 1;
}
if(num[x][y][(d + 1) % 4] == 0){
q1.push(x);
q2.push(y);
direct.push((d + 1) % 4);
num[x][y] [(d + 1) % 4] = 1;
f.push(s + 1);
}
if(num[x][y][(d + 4 - 1) % 4] == 0){
q1.push(x);
q2.push(y);
direct.push((d + 4 - 1) % 4);
num[x][y][(d + 4 - 1) % 4] = 1;
f.push(s + 1);
}
q1.pop();
q2.pop();
f.pop();
direct.pop();
}
}
int main(){
memset(num,0,sizeof(num));
memset(map,0,sizeof(map));
cin>>n>>m;
for(int i = 1; i <= n; i ++)
for(int j = 1; j <= m; j ++){
int p;
cin>>p;
if(p == 1){
map[i][j] = 1;
map[i][j - 1] = 1;
map[i - 1][j] = 1;
map[i - 1][j - 1] = 1;
}
}
int x1,y1;
char c;
cin>>x1>>y1>>x2>>y2>>c;
int s;
if(c == 'E') s = 0;
if(c == 'S') s = 1;
if(c == 'W') s = 2;
if(c == 'N') s = 3;
q1.push(x1);
q2.push(y1);
direct.push(s);
f.push(0);
num[x1][y1][s] = 1;
bfs();
cout<<-1;
return 0;
}