洛谷P1126 机器人搬重物

一道 b f s 的好题 \sout{一道bfs的好题} 一道bfs的好题
一看题目就是 b f s ,但是细节很多 \small{一看题目就是bfs,但是细节很多} 一看题目就是bfs,但是细节很多
机器人是在 格点 上的,障碍物则是在 格子 里的,要注意障碍物位置并不是对应格点位置,而是一个障碍物占了 4 个格点 机器人是在\mathbf{格点}上的,障碍物则是在\mathbf{格子}里的,要注意障碍物位置并不是对应格点位置,而是一个障碍物占了4个格点 机器人是在格点上的,障碍物则是在格子里的,要注意障碍物位置并不是对应格点位置,而是一个障碍物占了4个格点

for(int i = 1; i <= n; i ++)
    for(int j = 1; j <= m; j ++){
        int p;
        cin>>p;
        if(p == 1){
            map[i][j] = 1;
            map[i][j - 1] = 1;
            map[i - 1][j] = 1;
            map[i - 1][j - 1] = 1;
        }
    }

然后是方向问题 \mathbf{然后是方向问题} 然后是方向问题
用两个常量数组来存储方向,通过模来控制转向 用两个常量数组来存储方向,通过模来控制转向 用两个常量数组来存储方向,通过模来控制转向

int xx[4] = {0,1,0,-1};   //E,S,W,N
int yy[4] = {1,0,-1,0};

(d + 1) % 4;			//右转
(d + 4 - 1) % 4;        //左转

要注意 b f s 状态的储存,一个点的状态有 坐标和方向 ,用一个三维数组存储 要注意bfs状态的储存,一个点的状态有\mathbf{坐标和方向},用一个三维数组存储 要注意bfs状态的储存,一个点的状态有坐标和方向,用一个三维数组存储

int num[55][55][5];       //x轴,y轴,方向

要注意机器人是圆形的,所以实际上可活动范围只有 1 ∼ n − 1 , 1 ∼ m − 1 要注意机器人是圆形的,所以实际上可活动范围只有1\sim{n-1},1\sim{m-1} 要注意机器人是圆形的,所以实际上可活动范围只有1n1,1m1

附上代码 附上代码 附上代码

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>

using namespace std;

int xx[4] = {0,1,0,-1};
int yy[4] = {1,0,-1,0};
queue<int> direct;
queue<int> q1;
queue<int> q2;
queue<int> f;
int n,m,x2,y2;
int map[55][55];
int mapp[55][55];
int num[55][55][5];

void bfs(){
    while (!q1.empty()){
        int x = q1.front(),y = q2.front();
        int d = direct.front();
        int s = f.front();
        if(x == x2 && y == y2){
            cout<<s<<endl;
            exit(0);
        }
        if((x + 1 * xx[d] < n) && (x + 1 * xx[d] > 0) && (y + 1 * yy[d] < m) && (y + 1 * yy[d] > 0) && (map[x + 1 * xx[d]][y + 1 * yy[d]] == 0) && (num[x + 1 * xx[d]][y + 1 * yy[d]][d] == 0)){
            q1.push(x + 1 * xx[d]);
            q2.push(y + 1 * yy[d]);
            direct.push(d);
            f.push(s + 1);
            num[x + 1 * xx[d]][y + 1 * yy[d]][d] = 1;
        }
        if((x + 2 * xx[d] < n) && (x + 2 * xx[d] > 0) && (y + 2 * yy[d] < m) && (y + 2 * yy[d] > 0) && (map[x + 2 * xx[d]][y + 2 * yy[d]] == 0) && (num[x + 2 * xx[d]][y + 2 * yy[d]][d] == 0) && (map[x + 1 * xx[d]][y + 1 * yy[d]] == 0)){
            q1.push(x + 2 * xx[d]);
            q2.push(y + 2 * yy[d]);
            direct.push(d);
            f.push(s + 1);
            num[x + 2 * xx[d]][y + 2 * yy[d]][d] = 1;
        }
        if((x + 3 * xx[d] < n) && (x + 3 * xx[d] > 0) && (y + 3 * yy[d] < m) && (y + 3 * yy[d] > 0) && (map[x + 3 * xx[d]][y + 3 * yy[d]] == 0) && (num[x + 3 * xx[d]][y + 3 * yy[d]][d] == 0) && (map[x + 1 * xx[d]][y + 1 * yy[d]] == 0) && (map[x + 2 * xx[d]][y + 2 * yy[d]] == 0)){
                    q1.push(x + 3 * xx[d]);
                    q2.push(y + 3 * yy[d]);
                    direct.push(d);
                    f.push(s + 1);
                    num[x + 3 * xx[d]][y + 3 * yy[d]][d] = 1;
        }
        if(num[x][y][(d + 1) % 4] == 0){
            q1.push(x);
            q2.push(y);
            direct.push((d + 1) % 4);
            num[x][y] [(d + 1) % 4] = 1;
            f.push(s + 1);
        }
        if(num[x][y][(d + 4 - 1) % 4] == 0){
            q1.push(x);
            q2.push(y);
            direct.push((d + 4 - 1) % 4);
            num[x][y][(d + 4 - 1) % 4] = 1;
            f.push(s + 1);
        }
        q1.pop();
        q2.pop();
        f.pop();
        direct.pop();
    }
}

int main(){
    memset(num,0,sizeof(num));
    memset(map,0,sizeof(map));
    cin>>n>>m;
    for(int i = 1; i <= n; i ++)
        for(int j = 1; j <= m; j ++){
            int p;
            cin>>p;
            if(p == 1){
                map[i][j] = 1;
                map[i][j - 1] = 1;
                map[i - 1][j] = 1;
                map[i - 1][j - 1] = 1;
            }
        }
    int x1,y1;
    char c;
    cin>>x1>>y1>>x2>>y2>>c;
    int s;
    if(c == 'E') s = 0;
    if(c == 'S') s = 1;
    if(c == 'W') s = 2;
    if(c == 'N') s = 3;
    q1.push(x1);
    q2.push(y1);
    direct.push(s);
    f.push(0);
    num[x1][y1][s] = 1;
    bfs();
    cout<<-1;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值