可持久化并查集

以洛谷 P 3402 \mathbf{P3402} P3402为例
题目链接

\qquad 并查集+可持久化,想到用可持久化数组来维护并查集,因为并查集本质上也是用数组记录的
但是 不能使用路径压缩 \mathbf{不能使用路径压缩} 不能使用路径压缩,因为路径压缩会改变 f a fa fa数组的值,持久化中,改变意味着需要 log ⁡ \log log的空间来维护
\qquad 平时因为路径压缩后查询速度过快,导致按秩合并无人问津,但是在不能使用路径压缩时按秩合并的作用就体现出来了,按秩合并可以在 log ⁡ n 的时间 \mathbf{\log n的时间} logn的时间内找到目标节点,在只有插入操作的情况下,按秩合并的总复杂度为 O ( n log ⁡ n ) \mathbf{O(n\log n)} O(nlogn),均摊 O ( log ⁡ n ) \mathbf{O(\log n)} O(logn)

\qquad 用可持久化数组维护按秩合并的并查集时要维护两个数组,一个 r o o t f a [ v e r ] rootfa[ver] rootfa[ver]记录 v e r ver ver版本的并查集,一个 r o o t d e p [ v e r ] rootdep[ver] rootdep[ver]记录 v e r ver ver版本的深度(即秩)

#include<iostream> 
#include<cstdio>

using namespace std;

const int MAXN = 2e5 + 5;

int rootfa[MAXN],rootdep[MAXN];
int top = 0;
int n;

struct Node{
	int l,r,val;
}t[MAXN * 50];

inline int read(){
	int n = 0,l = 1;
	char c = getchar();
	while(c < '0' || c > '9'){
		if(c == '-') l = -1;
		c = getchar();
	}
	while(c >= '0' && c <= '9'){
		n = (n << 1) + (n << 3) + (c & 15);
		c = getchar();
	}
	return n * l;
}


inline int built_tree(int l,int k,int r){
	k = ++ top;
	if(l == r){
		t[k].val = l;                                     //初始父亲即为自己 
		return k;
	}
	int mid = l + ((r - l) >> 1);
	t[k].l = built_tree(l,t[k].l,mid);
	t[k].r = built_tree(mid + 1,t[k].r,r);
	return k;
}

inline int query(int l,int k,int r,int x){				//查询x节点的父亲或者深度 
	if(l == r) return t[k].val;
	int mid = l + ((r - l) >> 1);
	if(x <= mid) return query(l,t[k].l,mid,x);
	else return query(mid + 1,t[k].r,r,x);
}

inline int find(int ver,int p){
	int x = query(1,rootfa[ver],n,p);
	if(p == x) return x;
	else return find(ver,x);
}

inline int update(int l,int k,int r,int x,int y){	   //并查集的合并,将x父亲改为y 
	t[++ top] = t[k];
	k = top;
	if(l == r){
		t[k].val = y;
		return k;
	}
	int mid = l + ((r - l) >> 1);
	if(x <= mid) t[k].l = update(l,t[k].l,mid,x,y);
	else t[k].r = update(mid + 1,t[k].r,r,x,y);
	return k;
}

void mer(int x,int ver,int y){						//在版本ver下,合并x和y 
	int f1 = find(ver - 1,x);
	int f2 = find(ver - 1,y);
	if(f1 == f2){
		rootfa[ver] = rootfa[ver - 1];
		rootdep[ver] = rootdep[ver - 1];
		return;
	}
	int d1 = query(1,rootdep[ver - 1],n,f1);
	int d2 = query(1,rootdep[ver - 1],n,f2);
	if(d1 < d2){
		rootfa[ver] = update(1,rootfa[ver - 1],n,f1,f2);
		rootdep[ver] = rootdep[ver - 1];
	}
	else if(d2 < d1){
		rootfa[ver] = update(1,rootfa[ver - 1],n,f2,f1);
		rootdep[ver] = rootdep[ver - 1];
	}
	else {
		rootfa[ver] = update(1,rootfa[ver - 1],n,f1,f2);
		rootdep[ver] = update(1,rootdep[ver - 1],n,f2,d2 + 1);
	}
}

int main(){
	n = read();
	int m = read();
	rootfa[0] = built_tree(1,0,n);                 //对并查集进行初始化,深度则不需要 
	for(int i = 1; i <= m; i ++){
		int f = read();
		if(f == 1){
			int x = read(),y = read();
			mer(x,i,y);
		}
		if(f == 2){
			int a = read();
			rootfa[i] = rootfa[a];
			rootdep[i] = rootdep[a];
		}
		if(f == 3){
			int x = read(),y = read();
			rootfa[i] = rootfa[i - 1];
			rootdep[i] = rootdep[i - 1];
			int f1 = find(i,x);
			int f2 = find(i,y);
			if(f1 == f2) printf("1\n");
			else printf("0\n");
		}
	}
	return 0;
}
持久化并查集是指在并查集的基础上,支持回退到任意历史版本。这个结构可以用来处理一些需要撤销或者回退操作的问题。以下是一个基本的可持久化并查集的实现。 ```python class Node: def __init__(self, parent=None, rank=0): self.parent = parent self.rank = rank class PersistentUnionFind: def __init__(self, size): self.n = size self.roots = [None] * (2 * size) self.ranks = [None] * (2 * size) def make_set(self, v): self.roots[v] = Node(v) self.ranks[v] = 0 def find(self, node, version): if node.parent is None: return node if node.parent != node: node.parent = self.find(node.parent, version) return node.parent def union(self, x, y, version): x_root = self.find(self.roots[x], version) y_root = self.find(self.roots[y], version) if x_root == y_root: return False if self.ranks[x_root] < self.ranks[y_root]: x_root, y_root = y_root, x_root new_root = Node(x_root, self.ranks[x_root] + (self.ranks[x_root] == self.ranks[y_root])) self.roots[x] = self.roots[y] = new_root self.ranks[x_root] = self.ranks[y_root] = new_root.rank return True def get_version(self): return len(self.roots) // self.n - 1 def get_root(self, v, version): return self.find(self.roots[v], version).parent.val ``` 这个代码中,我们使用了一个 `Node` 类来表示每个节点,其中 `parent` 表示节点的父亲,`rank` 表示节点的秩。我们需要用一个 `roots` 数组来保存所有版本的根节点,以及一个 `ranks` 数组来保存所有节点的秩。`make_set` 函数用来初始化一个新节点,这个节点的父亲指向自己,秩为 0。`find` 函数用来找到节点所在的集合的根节点。如果节点的父亲不是根节点,那么我们就递归地寻找它的父亲。在递归返回之前,我们将所有遍历过的节点的父亲都更新为根节点,这样可以加速下次查找。`union` 函数用来将两个节点所在的集合合并。首先找到两个节点所在集合的根节点,如果根节点相同,那么这两个节点已经在同一个集合中,不需要再次合并。否则,我们将秩较小的根节点挂在秩较大的根节点下面,同时更新秩。`get_version` 函数用来获取当前版本号,而 `get_root` 函数则用来获取节点在指定版本中所在的集合的根节点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值