【模板】割点Tarjan算法

题目链接

先介绍一下割点

割点定义:

\qquad 在一个连通无向图中,如果将该点和该点所连的边去掉,该图不再连通,则称该点为割点

在这里插入图片描述
这个图中,2,3就是割点

Tarjan

这个算法可以用来求割点和连通分量,这里主要介绍求割点的部分。
主要思想是对一个图进行dfs,则其可以变为有回边的树
回边就是图比树所多出来的边
在这里插入图片描述
红色边即为回边
首先来思考一下什么样的情况下会产生割点

在这里插入图片描述

在这个图中,红色边为回边,以1为根节点,根节点有 2 2 2个子树,所以根节点就是割点 2 2 2这个结点,其子节点 3 , 5 3,5 3,5无法通过回边到达比 2 2 2更远的祖先,所以 2 2 2是割点。而 3 3 3的子节点 5 5 5可以通过回边到达比 3 3 3更远的祖先 2 2 2,所以 3 3 3不是割点

通过上面总结出如何判断一个结点是否是割点
1. \mathbf{1.} 1.根节点如果有 2 2 2个或 2 2 2个以上的子树,则根节点为割点
2. \mathbf{2.} 2.非根结点如果子节点无法通过回边到达比自己更远的祖先,则该结点为割点

下面介绍如何实现 T a r j a n Tarjan Tarjan算法

用两个数组来维护是否为割点, d f n [ u ] dfn[u] dfn[u]表示 u u u在dfs中第几个被访问到(即时间戳), l o w [ u ] low[u] low[u]表示 u u u通过非回溯边回到的最远祖先的 d f n [ ] dfn[] dfn[]
当我们遍历到一条边 ( u , v ) (u,v) u,v有两种情况
1. v 1.v 1.v未遍历过
\qquad 则如果回溯到 u u u l o w [ v ] < d f n [ u ] low[v] < dfn[u] low[v]<dfn[u] u u u为割点
2. v 2.v 2.v已经遍历过
\qquad 则说明 ( u , v ) (u,v) (u,v)为回边,此时 d f n [ v ] dfn[v] dfn[v]可能为 u u u的最远祖先,更新 l o w [ u ] low[u] low[u]
特别的:当回溯到根节点时说明一棵子树遍历完了,将 c h i l d + 1 child+1 child+1,如果 c h i l d > 2 child>2 child>2则说明根节点也是割点

A C c o d e ACcode ACcode

#include<bits\stdc++.h>

const int MAXN = 2e5 + 10;
int dfn[MAXN],cnt,low[MAXN],child,sign;
bool cut[MAXN];
int head[MAXN];
int top;
struct Node{
	int k,next;
}tr[MAXN];

using namespace std;

inline int read(){
	int n = 0,l = 1;
	char c = getchar();
	while(c < '0' || c > '9'){
		if(c == '-') l = -1;
		c = getchar();
	}
	while(c >= '0' && c <= '9'){
		n = (n << 1) + (n << 3) + (c & 15);
		c = getchar();
	}
	return n * l;
}

void add(int x,int y){
	tr[top].k = y;
	tr[top].next = head[x];
	head[x] = top ++;
}

void tarjan(int u,int fa){
	dfn[u] = low[u] = ++sign;
	for(int i = head[u]; i; i = tr[i].next){
		int v = tr[i].k;
		if(!dfn[v]){
			tarjan(v,fa);								//v该节点未访问过
			low[u] = min(low[v],low[u]);				//将儿子和自己访问的最远祖先作比较
			if(u != fa && low[v] >= dfn[u] && !cut[u]){ //u不是根节点,且儿子v可以沿回路到达的最远祖先在u之下,则u为一个割点
				cut[u] = 1;
				cnt ++;
	 		}
			if(u == fa) child++;						//返回到根节点则子树总数+1
		}else low[u] = min(low[u],dfn[v]);				//v结点访问过,则v可能为u的最远祖先,进行判断
	}
	if(u == fa && child > 1 && !cut[u]){
		cut[u] = 1;
		cnt ++;
	}
}

int main(){
	memset(dfn,0,sizeof(dfn));
	int n = read(),m = read();
	for(int i = 1; i <= m; i ++){
		int x = read(),y = read();
		add(x,y);
		add(y,x);
	}
	for(int i = 1; i <= n; i ++)
		if(!dfn[i]){
			child = 0;
			tarjan(i,i);
		}
	printf("%d\n",cnt);
	for(int i = 1; i <= n; i ++)
		if(cut[i]) printf("%d ",i);
	return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值