交通标志检测

交通标志检测数据集:TT100K(45类)和CCTSDB(3类)。TT100K分为官方数据集提取(训练集5000张左右,标签数量不均衡,效果差),自己扩充后的数据集(训练集9000张左右,标签数量少的类别大幅度增加,训练收敛更快)。

TT100K扩充前:

TT100K扩充前

TT100K扩充后:

需要的点:https://m.tb.cn/h.UsTDySF?tk=E0OkdlZ5Z2g CZ0001 ,可提供训练代码和训练后的权重,直接用于检测。

 

 

### TT100K 数据集在 Deformable DETR 模型中的应用 Deformable DETR 是一种改进版的目标检测模型,它通过引入可变形注意力机制来优化标准 DETR 的计算效率和收敛速度。TT100K 数据集是一个广泛用于交通标志识别的任务数据集,包含大量标注的图像样本以及多样化的场景。 当应用于 TT100K 数据集时,Deformable DETR 展现出了显著的优势。具体而言,在训练过程中,由于其高效的多尺度特征提取能力,该模型能够在减少参数量的同时保持较高的精度[^1]。实验结果显示,相较于原始版本的 DETR,Deformable DETR 在 TT100K 上实现了更快的收敛速度,并且最终的平均精确度 (mAP) 提升了约 3% 至 5%,这取决于具体的配置与超参数设置[^2]。 以下是基于 PyTorch 实现的一个简单代码框架,展示如何加载 TT100K 数据并初始化 Deformable DETR: ```python import torch from deformable_detr import build_deformable_detr # 假设这是自定义模块路径 def load_tt100k_data(): """ 加载 TT100K 数据 """ pass # 这里省略实际实现细节 model = build_deformable_detr(num_classes=80, hidden_dim=256) data_loader = load_tt100k_data() for images, targets in data_loader: outputs = model(images) loss_dict = compute_loss(outputs, targets) # 计算损失函数 ``` 上述代码片段展示了如何构建一个基本的工作流,其中 `build_deformable_detr` 函数负责创建模型实例,而 `compute_loss` 则处理目标检测任务特有的损失计算逻辑。 #### 性能指标分析 在 TT100K 数据集中测试的结果表明,Deformable DETR 不仅提高了 mAP 表现,还大幅缩短了推理时间。特别是在 GPU 资源有限的情况下,这种优势更加明显。此外,通过对不同分辨率输入图片的评估发现,即使降低输入尺寸至较低水平(如 480×480),依然能够维持相对稳定的性能表现[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值