2023暑期培训【第2周】---卷积神经网络

目录

1.视频学习

2.代码练习1--使用CNN对MNIST数据集分类

3.代码练习2--使用CNN对CIFAR10数据集分类

4.代码练习3--使用VGG16对CIFAR10数据集分类

5.问题总结


1.视频学习

通过视频学习,我对很多问题有了更加系统全面的认知。

为什么要使用卷积神经网络处理图像问题?

       全连接网络在处理图像时具有一些问题:权重矩阵的参数太多,容易导致过拟合,泛化性差。卷积神经网络使用卷积核来达到局部关联的效果,滑动窗口的过程中参数共享。

卷积神经网络的组成结构---卷积层、池化层、全连接层

       卷积:是对两个实变函数的一种操作。输入大小为N*N,卷积核大小为F*F时,输出的特征图大小:

(N-F)/stride+1;

(N+padding*2-F)/stride+1。

      池化:保留了主要特征的同时减少参数和计算量,防止过拟合,提高模型的泛化能力;它一般处于卷积层与卷积层之间,全连接层与全连接层之间。Pooling类型包括Maxpooling(分类中常用)和Averagepooling。

    全连接:两层之间所有神经元都有权重连接;通常全连接层在卷积神经网络尾部;全连接层参数量最大。

2.代码练习1--使用CNN对MNIST数据集分类

深度卷积神经网络有如下特性:

很多层: compositionality 卷积: locality + stationarity of images 池化: Invariance of object class to translations

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy

# 一个函数,用来计算模型中有多少参数
def get_n_params(model):
    np=0
    for p in list(model.parameters()):
        np += p.nelement()  ##pytorch中的 nelement() 可以统计 tensor (张量)中 元素的个数。
    return np


device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

2.1加载数据(MNIST)

PyTorch里包含了 MNIST, CIFAR10 等常用数据集。 小tips:MNIST数据集是美国国家标准与技术研究院收集整理的大型手写数字数据库。包含60,000个示例的训练集以及10,000个示例的测试集。

调用 torchvision.datasets 即可把这些数据由远程下载到本地,下面给出MNIST的使用方法:

torchvision.datasets.MNIST(root, train=True, transform=None, target_transform=None, download=False)

---root 为数据集下载到本地后的根目录,包括 training.pt 和 test.pt 文件

---train,如果设置为True,从training.pt创建数据集,否则从test.pt创建。

---download,如果设置为True, 从互联网下载数据并放到root文件夹下

---transform, 一种函数或变换,输入PIL图片,返回变换之后的数据。

---target_transform 一种函数或变换,输入目标,进行变换。

另外值得注意的是,DataLoader是一个比较重要的类,提供的常用操作有:batch_size(每个batch的大小), shuffle(是否进行随机打乱顺序的操作), num_workers(加载数据的时候使用几个子进程)

input_size  = 28*28   # MNIST上的图像尺寸是 28x28
output_size = 10      # 类别为 0 到 9 的数字,因此为十类
input_size  = 28*28   # MNIST上的图像尺寸是 28x28
output_size = 10      # 类别为 0 到 9 的数字,因此为十类

train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('./data', train=True, download=True,
        transform=transforms.Compose(
            [transforms.ToTensor(),
             transforms.Normalize((0.1307,), (0.3081,))])),
    batch_size=64, shuffle=True)

test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('./data', train=False, transform=transforms.Compose([
             transforms.ToTensor(),
             transforms.Normalize((0.1307,), (0.3081,))])),
    batch_size=1000, shuffle=True)

#显示数据集中的部分图像
plt.figure(figsize=(8, 5))
for i in range(20):
    plt.subplot(4, 5, i + 1)
##__getitem__() : 接收一个index,这个index通常指的是一个list的index
##这个list的每个元素就包含了图片数据的路径和标签信息,返回数据对(图像和标签)    
    image, _ = train_loader.dataset.__getitem__(i)
##将图像张量进行处理,去除任何尺寸为1的维度,将其转换为NumPy数组
    plt.imshow(image.squeeze().numpy(),'gray')#取灰度图
    plt.axis('off');

2.2创建网络(FC2Layer和CNN)

定义网络时,需要继承nn.Model,并实现它的foward方法,把网络中具有可学习参数的层放在构造函数init中。

只要在nn.Module的子类中定义了forward函数,backward函数就会自动被实现(利用autograd)

class FC2Layer(nn.Module):
    def __init__(self, input_size, n_hidden, output_size):
        # nn.Module子类的函数必须在构造函数中执行父类的构造函数
        # 下式等价于nn.Module.__init__(self)        
        super(FC2Layer, self).__init__()
        self.input_size = input_size
        # 这里直接用 Sequential 就定义了网络,注意要和下面 CNN 的代码区分开
        self.network = nn.Sequential(
            nn.Linear(input_size, n_hidden), 
            nn.ReLU(), 
            nn.Linear(n_hidden, n_hidden), 
            nn.ReLU(), 
            nn.Linear(n_hidden, output_size), 
            nn.LogSoftmax(dim=1)
        )
    def forward(self, x):
        # view一般出现在model类的forward函数中,用于改变输入或输出的形状
        # x.view(-1, self.input_size) 的意思是多维的数据展成二维
        # 代码指定二维数据的列数为 input_size=784,行数 -1 表示我们不想算,电脑会自己计算对应的数字
        # 在 DataLoader 部分,我们可以看到 batch_size 是64,所以得到 x 的行数是64
        # 大家可以加一行代码:print(x.cpu().numpy().shape)
        # 训练过程中,就会看到 (64, 784) 的输出,和我们的预期是一致的

        # forward 函数的作用是,指定网络的运行过程,这个全连接网络可能看不啥意义,
        # 下面的CNN网络可以看出 forward 的作用。
        x = x.view(-1, self.input_size)
        return self.network(x)
    


class CNN(nn.Module):
    def __init__(self, input_size, n_feature, output_size):
        # 执行父类的构造函数,所有的网络都要这么写
        super(CNN, self).__init__()
        # 下面是网络里典型结构的一些定义,一般就是卷积和全连接
        # 池化、ReLU一类的不用在这里定义
        self.n_feature = n_feature
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=n_feature, kernel_size=5)
        self.conv2 = nn.Conv2d(n_feature, n_feature, kernel_size=5)
        self.fc1 = nn.Linear(n_feature*4*4, 50)
        self.fc2 = nn.Linear(50, 10)    
    
    # 下面的 forward 函数,定义了网络的结构,按照一定顺序,把上面构建的一些结构组织起来
    # 意思就是,conv1, conv2 等等的,可以多次重用
    def forward(self, x, verbose=False):
        x = self.conv1(x)
        x = F.relu(x)
        x = F.max_pool2d(x, kernel_size=2)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, kernel_size=2)
        x = x.view(-1, self.n_feature*4*4)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = F.log_softmax(x, dim=1)
        return x

定义训练和测试函数

# 训练函数
def train(model):
    model.train()
    # 主里从train_loader里,64个样本一个batch为单位提取样本进行训练
    for batch_idx, (data, target) in enumerate(train_loader):
        # 把数据送到GPU中
        data, target = data.to(device), target.to(device)
##于将优化器(optimizer)中的梯度归零。在每个训练批次之前,需要清除之前批次的梯度信息,以便进行新一批数据的梯度计算。
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
##这行代码进行反向传播,计算梯度
        loss.backward()
##这行代码通过调用优化器的step()方法来更新模型的参数。
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))


def test(model):
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        # 把数据送到GPU中
        data, target = data.to(device), target.to(device)
        # 把数据送入模型,得到预测结果
        output = model(data)
        # 计算本次batch的损失,并加到 test_loss 中
        test_loss += F.nll_loss(output, target, reduction='sum').item()
        # get the index of the max log-probability,最后一层输出10个数,
        # 值最大的那个即对应着分类结果,然后把分类结果保存在 pred 里
        pred = output.data.max(1, keepdim=True)[1]
        # 将 pred 与 target 相比,得到正确预测结果的数量,并加到 correct 中
        # 这里需要注意一下 view_as ,意思是把 target 变成维度和 pred 一样的意思                                                
        correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()

    test_loss /= len(test_loader.dataset)
    accuracy = 100. * correct / len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        accuracy))

2.3在小型全连接网络上训练(Fully-connected network)

n_hidden = 8 # number of hidden units

model_fnn = FC2Layer(input_size, n_hidden, output_size)
model_fnn.to(device)
optimizer = optim.SGD(model_fnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_fnn)))

train(model_fnn)
test(model_fnn)

2.4在卷积神经网络上训练

需要注意的是,定义的CNN和全连接网络,拥有相同数量的模型参数。

# Training settings 
n_features = 6 # number of feature maps

model_cnn = CNN(input_size, n_features, output_size)
model_cnn.to(device)
optimizer = optim.SGD(model_cnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_cnn)))

train(model_cnn)
test(model_cnn)

通过上面的测试结果,可以发现,含有相同参数的 CNN 效果要明显优于 简单的全连接网络,是因为 CNN 能够更好的挖掘图像中的信息,主要通过两个手段:

卷积:Locality and stationarity in images 池化:Builds in some translation invariance

1.5打乱像素顺序再次在两个网络上训练与测试

考虑到CNN在卷积与池化上的优良特性,如果我们把图像中的像素打乱顺序,这样 卷积 和 池化 就难以发挥作用了,为了验证这个想法,我们把图像中的像素打乱顺序再试试。

首先下面代码展示随机打乱像素顺序后,图像的形态:

# 这里解释一下 torch.randperm 函数,给定参数n,返回一个从0到n-1的随机整数排列
perm = torch.randperm(784)
plt.figure(figsize=(8, 4))
for i in range(10):
    image, _ = train_loader.dataset.__getitem__(i)
    # permute pixels
    image_perm = image.view(-1, 28*28).clone()
    image_perm = image_perm[:, perm]
    image_perm = image_perm.view(-1, 1, 28, 28)
    plt.subplot(4, 5, i + 1)
    plt.imshow(image.squeeze().numpy(), 'gray')
    plt.axis('off')
    plt.subplot(4, 5, i + 11)
    plt.imshow(image_perm.squeeze().numpy(), 'gray')
    plt.axis('off')

重新定义训练与测试函数,我们写了两个函数 train_perm 和 test_perm,分别对应着加入像素打乱顺序的训练函数与测试函数。

与之前的训练与测试函数基本上完全相同,只是对 data 加入了打乱顺序操作。

# 对每个 batch 里的数据,打乱像素顺序的函数
def perm_pixel(data, perm):
    # 转化为二维矩阵
    data_new = data.view(-1, 28*28)
    # 打乱像素顺序
    data_new = data_new[:, perm]
    # 恢复为原来4维的 tensor
    data_new = data_new.view(-1, 1, 28, 28)
    return data_new

# 训练函数
def train_perm(model, perm):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        # 像素打乱顺序
        data = perm_pixel(data, perm)

        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))

# 测试函数
def test_perm(model, perm):
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        data, target = data.to(device), target.to(device)

        # 像素打乱顺序
        data = perm_pixel(data, perm)

        output = model(data)
        test_loss += F.nll_loss(output, target, reduction='sum').item()
        pred = output.data.max(1, keepdim=True)[1]                                            
        correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()

    test_loss /= len(test_loader.dataset)
    accuracy = 100. * correct / len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        accuracy))

在全连接网络上训练与测试:

perm = torch.randperm(784)
n_hidden = 8 # number of hidden units

model_fnn = FC2Layer(input_size, n_hidden, output_size)
model_fnn.to(device)
optimizer = optim.SGD(model_fnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_fnn)))

train_perm(model_fnn, perm)
test_perm(model_fnn, perm)

在卷积神经网络上训练与测试:

perm = torch.randperm(784)
n_features = 6 # number of feature maps

model_cnn = CNN(input_size, n_features, output_size)
model_cnn.to(device)
optimizer = optim.SGD(model_cnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_cnn)))

train_perm(model_cnn, perm)
test_perm(model_cnn, perm)

 从打乱像素顺序的实验结果来看,全连接网络的性能基本上没有发生变化,但是 卷积神经网络的性能明显下降。

这是因为对于卷积神经网络,会利用像素的局部关系,但是打乱顺序以后,这些像素间的关系将无法得到利用。

3.代码练习2--使用CNN对CIFAR10数据集分类

对于视觉数据,PyTorch 创建了一个叫做 totchvision 的包,该包含有支持加载类似Imagenet,CIFAR10,MNIST 等公共数据集的数据加载模块 torchvision.datasets 和支持加载图像数据数据转换模块 torch.utils.data.DataLoader。

下面将使用CIFAR10数据集,它包含十个类别:‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’。CIFAR-10 中的图像尺寸为3x32x32,也就是RGB的3层颜色通道,每层通道内的尺寸为32*32。

3.1加载数据

首先,加载并归一化 CIFAR10 使用 torchvision 。torchvision 数据集的输出是范围在[0,1]之间的 PILImage,我们将他们转换成归一化范围为[-1,1]之间的张量 Tensors。 下面代码中说的是 0.5,怎么就变化到[-1,1]之间了?PyTorch源码中是这么写的: input[channel] = (input[channel] - mean[channel]) / std[channel] 这样就是:((0,1)-0.5)/0.5=(-1,1)。

import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

# 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

# 注意下面代码中:训练的 shuffle 是 True,测试的 shuffle 是 false
# 训练时可以打乱顺序增加多样性,测试是没有必要
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=8,
                                         shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

下面展示 CIFAR10 里面的一些图片:

遇到'_MultiProcessingDataLoaderIter' object has no attribute 'next'错误,这可能是由于使用了多进程数据加载器而导致的迭代器问题。

将images, labels = iter(trainloader).next()修改为

data_iter = iter(trainloader)

images, labels = next(data_iter)

def imshow(img):
    plt.figure(figsize=(8,8))
    img = img / 2 + 0.5     # 转换到 [0,1] 之间
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()
#images, labels = iter(trainloader).next()
# 得到一组图像
data_iter = iter(trainloader)
images, labels = next(data_iter)

# 展示图像
imshow(torchvision.utils.make_grid(images))
# 展示第一行图像的标签
for j in range(8):
    print(classes[labels[j]])

3.2定义网络

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 网络放到GPU上
net = Net().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)

3.3训练网络 

#训练网络
for epoch in range(10):  # 重复多轮训练
    for i, (inputs, labels) in enumerate(trainloader):
        inputs = inputs.to(device)
        labels = labels.to(device)
        # 优化器梯度归零
        optimizer.zero_grad()
        # 正向传播 + 反向传播 + 优化 
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        # 输出统计信息
        if i % 100 == 0:   
            print('Epoch: %d Minibatch: %5d loss: %.3f' %(epoch + 1, i + 1, loss.item()))

print('Finished Training')

3.4测试验证准确率

##我们把图片输入模型,看看CNN把这些图片识别成什么:
outputs = net(images.to(device))
_, predicted = torch.max(outputs, 1)

# 展示预测的结果
for j in range(8):
    print(classes[predicted[j]])

##可以看到,有几个都识别错了~~~ 让我们看看网络在整个数据集上的表现:
correct = 0
total = 0

for data in testloader:
    images, labels = data
    images, labels = images.to(device), labels.to(device)
    outputs = net(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))

 

 准确率还可以,通过改进网络结构,性能还可以进一步提升。在 Kaggle 的LeaderBoard上,准确率高的达到95%以上。

4.代码练习3--使用VGG16对CIFAR10数据集分类

使用 VGG16 对 CIFAR10 分类 VGG是由Simonyan 和Zisserman在文献《Very Deep Convolutional Networks for Large Scale Image Recognition》中提出卷积神经网络模型,其名称来源于作者所在的牛津大学视觉几何组(Visual Geometry Group)的缩写。

该模型参加2014年的 ImageNet图像分类与定位挑战赛,取得了优异成绩:在分类任务上排名第二,在定位任务上排名第一。

VGG16的网络结构如下图所示:

16层网络的结节信息如下:

01:Convolution using 64 filters

02: Convolution using 64 filters + Max pooling

03: Convolution using 128 filters

04: Convolution using 128 filters + Max pooling

05: Convolution using 256 filters

06: Convolution using 256 filters

07: Convolution using 256 filters + Max pooling

08: Convolution using 512 filters

09: Convolution using 512 filters

10: Convolution using 512 filters + Max pooling

11: Convolution using 512 filters

12: Convolution using 512 filters

13: Convolution using 512 filters + Max pooling

14: Fully connected with 4096 nodes

15: Fully connected with 4096 nodes

16: Softmax

4.1 定义 dataloader

需要注意的是,这里的 transform,dataloader 和之前定义的有所不同。

import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

# 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])

transform_test = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,  download=True, transform=transform_train)
testset  = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)

trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

4.2 VGG 网络定义 

结构基本上是:

64 conv, maxpooling,

128 conv, maxpooling,

256 conv, 256 conv, maxpooling,

512 conv, 512 conv, maxpooling,

512 conv, 512 conv, maxpooling,

softmax

运行代码时,出现了name 'cfg' is not defined错误。这是因为在self.features = self._make_layers(cfg)这行代码中,变量cfg未被定义。要解决这个问题,将self.cfg替换为cfg,以确保在调用_make_layers方法时传递正确的参数。

class VGG(nn.Module):
    def __init__(self):
        super(VGG, self).__init__()
       #self.cfg = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']
        cfg = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']
        self.features = self._make_layers(cfg)

        self.classifier = nn.Linear(512, 10)

    def forward(self, x):
        out = self.features(x)
        out = out.view(out.size(0), -1)
        out = self.classifier(out)
        return out

    def _make_layers(self, cfg):
        layers = []
        in_channels = 3
        for x in cfg:
            if x == 'M':
                layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
            else:
                layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
                           nn.BatchNorm2d(x),
                           nn.ReLU(inplace=True)]
                in_channels = x
        layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
        return nn.Sequential(*layers)

# 网络放到GPU上
net = VGG().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)

4.3 网络训练

for epoch in range(10):  # 重复多轮训练
    for i, (inputs, labels) in enumerate(trainloader):
        inputs = inputs.to(device)
        labels = labels.to(device)
        # 优化器梯度归零
        optimizer.zero_grad()
        # 正向传播 + 反向传播 + 优化 
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        # 输出统计信息
        if i % 100 == 0:   
            print('Epoch: %d Minibatch: %5d loss: %.3f' %(epoch + 1, i + 1, loss.item()))

print('Finished Training')

4.4测试验证准确率

correct = 0
total = 0

for data in testloader:
    images, labels = data
    images, labels = images.to(device), labels.to(device)
    outputs = net(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %.2f %%' % (
    100 * correct / total))
     

可以看到,使用一个简化版的 VGG 网络,就能够显著地将准确率由 62%,提升到 83.52%

注:在运行时,遇到的错误‘mat1 and mat2 shapes cannot be multiplied (128x512 and 2048x10)’,是由于输入数据的维度与模型的权重矩阵维度不匹配引起的。模型最后一层的全连接层(self.classifier)输出维度为(batch_size, 2048),然后尝试将其与(batch_size, 512)的权重矩阵相乘,得到维度为(batch_size, 10)的输出。

将模型的最后一层全连接层的输入维度修改为匹配权重矩阵的维度512,便解决了这个问题。

总结:

(1)对MNIST数据集进行分类时,含有相同参数的 CNN 效果要明显优于简单的全连接网络,因为CNN通过卷积和池化能够更好的挖掘图像中的信息,但是由于CNN利用了像素的局部关系,所以当打乱像素顺序时,CNN性能明显下降。

(2)使用CNN对CIFAR10数据集分类时,准确率达到60%左右,使用一个简化版的 VGG 网络能够显著地提升准确率。

5.问题总结

1.dataloader 里面 shuffle 取不同值有什么区别?

DataLoader 是一个用于加载数据的实用程序类,shuffle 参数是 DataLoader 的一个可选参数,用于确定是否在每个 epoch之前对数据进行随机排序。shuffle 参数有三种可能的取值:

(1)shuffle=True:这是默认值。当设置为 True 时,DataLoader 会在每个 epoch 之前将数据随机打乱,以确保每个训练样本都有平等的机会参与训练,并减少模型对输入数据顺序的依赖性。

(2)shuffle=False:当设置为 False 时,DataLoader 不会对数据进行随机排序,而是按照原始顺序加载数据。这对于验证集或测试集等不需要进行训练的数据集是有意义的。

(3)huffle=<custom_rng>:还可以传递一个可迭代对象(如一个随机数生成器),该对象用于确定洗牌的顺序。这允许用户使用自定义的随机种子或特定的洗牌算法,以满足特定需求。

2.transform 里,取了不同值,这个有什么区别?

transform 参数用于指定对数据进行的预处理操作,如数据增强、标准化、裁剪等。在 PyTorch 中,transform 参数通常与数据加载器(如 DataLoader)一起使用,以在加载数据时自动应用这些预处理操作。transform 参数可以接受不同的取值,包括以下几种常见情况:

(1)transform=None这是默认值。当将 transform 设置为 None 时,数据加载器将不会对数据进行任何预处理操作。这适用于已经是模型所需格式的原始数据或者已经进行了预处理的数据。

(2)transform=transforms.Compose([...])这是一个常见的用法,其中 transforms.Compose 是一个函数,它接受一个由多个数据转换函数组成的列表,并将它们按顺序应用于数据。通过将多个转换函数组合在一起,可以在加载数据时一次性应用多个预处理操作。

(3)自定义转换函数:自定义转换函数来进行数据处理,自定义转换函数应该接受输入数据并返回预处理后的数据。

3.epoch 和 batch 的区别?

Epoch 是整个数据集上的一次完整迭代,其中模型会看到并处理每个样本一次。

Batch 是将数据集分成小块进行处理的单位,模型在每个批次上计算损失函数并进行参数更新。

4.1x1的卷积和 FC 有什么区别?主要起什么作用?

(1)区别:1x1卷积是一种卷积操作,对输入特征图进行组合和变换,调整通道数和提取特征间的空间关系;全连接层是一种基本层类型,将所有输入与输出层的神经元连接起来,学习输入与输出之间的复杂关系。

(2)作用:1x1卷积主要用于调整特征图的维度、增加非线性和提取特征间的空间关系,同时减少参数和计算量;全连接层用于将输入特征映射到最终预测或分类结果,学习输入与输出之间的复杂关系。

5.residual leanring 为什么能够提升准确率?

残差学习通过引入残差连接,解决了深层网络训练中的梯度消失和梯度爆炸问题,提升了信息的流动性,减少了参数量和计算量,并加快了训练速度。这些因素共同作用,使得模型在学习复杂任务时具有更好的性能和准确率。

6.代码练习二里,网络和1989年 Lecun 提出的 LeNet 有什么区别?

(1)代码中的网络结构比LeNet更深,具有更多的层和参数。

(2)代码中的网络使用ReLU作为激活函数,而LeNet使用的是Sigmoid和Tanh激活函数。

(3)代码中的网络接受3通道(RGB)的图像作为输入,而LeNet设计用于灰度图像,只接受单通道输入。

(4)代码中的网络使用Adam优化器和交叉熵损失函数进行训练,而LeNet使用的是随机梯度下降(SGD)优化器和均方差损失函数。

7.代码练习二里,卷积以后feature map 尺寸会变小,如何应用 Residual Learning?

可以基于ResNet的思想构建一个残差块,然后在网络中使用多个残差块。在每个残差块中,通过跳跃连接将输入直接添加到输出中,从而实现了残差学习,去掉相同的主体部分,从而突出微小变化。

8.有什么方法可以进一步提升准确率?

(1)增加网络深度:增加网络的深度可以增加模型的表达能力和学习能力。更深的网络可以捕捉到更复杂的特征和模式,从而提升准确率。

(2)使用更复杂的网络结构:尝试使用更复杂的网络结构,具有更多的层和模块,能够更好地捕捉图像中的细节和复杂关系,提高准确率。

(3)数据增强:通过对训练数据应用各种变换和增强操作,提高模型的泛化能力和准确率。数据增强还可以帮助模型更好地适应不同的输入变化和噪声。

(4)正则化技术:使用正则化技术来防止过拟合,如L1/L2正则化、Dropout、Batch Normalization等。这些技术可以减少模型的复杂度、提高泛化能力,并改善模型的准确率。

(5)学习率调度:合理调整学习率可以帮助模型更好地收敛并获得更好的准确率。使用学习率衰减、动态调整学习率的策略(如学习率衰减、学习率预热、学习率调度等)可以在训练过程中平衡模型的收敛速度和准确率。

(6)集成学习:通过将多个模型的预测结果进行组合或投票,可以提升准确率。集成学习方法包括Bagging、Boosting、Stacking等,可以有效地减少模型的方差,提高模型的鲁棒性和准确率。

(7)超参数调优:对模型的超参数进行调优,如学习率、正则化系数、批次大小等,可以找到更好的参数组合,从而提高模型的准确率。可以使用网格搜索、随机搜索、贝叶斯优化等方法来搜索超参数空间。

(8)迁移学习:利用预训练的模型参数,在目标任务上进行微调或特征提取,可以加速模型的训练过程并提高准确率。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值