2022.04.05学习记录(Lucas定理)

今天模拟考rk2!快乐(虽然感觉都是人口普查分)

rk1是qjk %%%!!他好聪明 想到可以puts -1骗分 然后就90了

20:00 开始工作

Lucas定理先

简单来说——对于质数o,在nlogp的复杂度内处理出单个组合数%p的结果。

其中 Lucas(n, m) = C(n % p, m % p) * Lucas(n / p, m / p) % p

T1 P3773 [CTSC2017]吉夫特

利用Lucas定理推导出,组合数为奇数的充要条件为n & m == m

由于值域范围小,开个桶记录之前的答案即可。

注意,作为开头,可以对后面的数额外贡献一次答案。

T2 P1495 【模板】中国剩余定理(CRT)/曹冲养猪

中国剩余定理——构造一次同余方程组的最小正整数解。

使用前提:模数(设为ai)两两互质。

一句话:先将模数全部乘起来得M,对于每个方程,用M  / ai得到mi并求其在模ai意义下逆元ti,最后对所有的bi * mi * ti求和即可。对M取模即得最小正整数解。

求逆元:扩展欧几里得定理。仍然注意使用前提:

对一次方程 ax + by = c,其中 gcd(a, b) | c

这道题要求 mi * x + ai * y = 1(x为所求逆元)

显然mi, ai互质,即gcd(mi, ai) == 1,故满足使用条件。

 得|x0| (特殊解)<= b,又欧几里得算法的通解可表示为:

x = x0 * c / d + k * b / d

y = y0 * c / d - k * a / d

其中 d = gcd(a, b)

本方程中 d == 1 则最小正整数解为 x = (x0 + t) % t

(实际上若d ≠ 1 则最小正整数解为 x = (x0 % t + t) % t

但有个疑惑:负数取模真不会出锅?)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值