2022.04.06学习记录(Lucas定理,中国剩余定理,容斥原理)

博客探讨了裴蜀定理和扩展中国剩余定理在解决数论问题中的应用,特别是在高精度计算和模运算场景下。文章通过实例解释了如何使用这两个定理来简化计算复杂度,并提到了欧拉定理在幂次取模问题上的作用。此外,还讨论了在面对大规模计算时,如何利用这些理论进行高效求解,以及中国剩余定理在合并解中的关键作用。
摘要由CSDN通过智能技术生成

了解了一下

裴蜀定理:ax + by = gcd(a, b)必定有解

扩展中国剩余定理:基于数学归纳法,合并之前的答案及当前方程即可。

(收获:学习的时候一定要看清楚定义!!因为没看清楚exgcd的定义而浪费了很多时间 其实一句话概括就是先用裴蜀定理求解,再还原,再找通解)

T1 P2480 [SDOI2010]古代猪文

题意:给定n, g(1 <= n, g <= 10^{9})求 g^{\sum_{k | n}\binom{n}{k}}

本题涉及到幂次取模,考虑欧拉定理。

gcd(a, n)= 1a^{\varphi(n)} \equiv 1 (mod n)

手算编程计算 发现 999911659是个质数,所以欧拉函数值为原值-1,得999811658。

分解得 999811658 = 2 * 3 * 4679 * 35617

而原题中 n 高达 10^{9},显然直接求解是无法承受的,考虑 Lucas 定理。

这样复杂度就降到了O(\sum_{p | 999911658}^{}g(n) logp)

问题是如何合并?——考虑中国剩余定理即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值