【无人地面车】具有扩展卡尔曼滤波器的无人机 /地面车辆协同定位 (Matlab实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

一、技术背景

二、协同定位原理

三、技术特点与优势

四、应用领域

五、结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

 具有扩展卡尔曼滤波器的无人机 - 地面车辆协同定位是一种先进的定位技术。在这个系统中,无人机和地面车辆相互协作,以实现更精确和可靠的定位。 扩展卡尔曼滤波器在其中发挥着关键作用。它能够处理复杂的动态系统中的不确定性和噪声,通过对无人机和地面车辆的传感器数据进行融合和估计,有效地减少定位误差。 这种协同定位方式充分利用了无人机的高空视野和机动性,以及地面车辆在特定地形中的稳定性和感知能力。通过两者之间的数据交互和共享,结合扩展卡尔曼滤波器的优化算法,能够实时更新位置估计,适应多变的环境和任务需求。 该技术在诸如物流配送、搜索救援、军事侦察等众多领域具有广泛的应用前景,有助于提高系统的自主性、安全性和工作效率。

具有扩展卡尔曼滤波器(Extended Kalman Filter, EKF)的无人机(Unmanned Aerial Vehicles, UAVs)与无人地面车辆(Unmanned Ground Vehicles, UGVs)协同定位是一种先进的技术应用,旨在通过信息共享和算法优化来提升定位精度和鲁棒性。以下是对该技术的详细解析:

一、技术背景

  • 无人机(UAVs):无人机以其高空视野和快速移动能力,能够提供大范围的环境感知和实时监测数据。
  • 无人地面车辆(UGVs):无人地面车辆则在地面上提供稳定的数据采集和细节观测,二者优势互补。
  • 扩展卡尔曼滤波器(EKF):EKF是一种适用于非线性系统的状态估计算法,它通过结合预测和观测数据,递归地更新系统状态估计,以提高定位精度。

二、协同定位原理

在无人机/地面车辆协同定位中,EKF起到了关键作用。具体流程如下:

  1. 预测步骤
    • 基于当前的状态估计(如位置、速度等)和系统的动力学模型,EKF预测下一时刻的状态。
  2. 观测步骤
    • 无人机和地面车辆各自通过其传感器(如GPS、激光雷达、摄像头等)获取观测数据。
    • 这些观测数据被用于后续的状态更新。
  3. 更新步骤
    • 结合预测值和观测值,通过卡尔曼增益对预测值进行调整,得到新的状态估计。
    • EKF能够处理非线性系统模型,并通过线性化方法(如泰勒级数展开)在每次迭代中更新状态估计。

三、技术特点与优势

  1. 提高定位精度
    • 通过无人机和地面车辆的多源数据融合,可以显著提高定位精度。
    • EKF能够有效处理噪声和不确定性,使得状态估计更加准确。
  2. 增强鲁棒性
    • 在单个传感器或车辆出现故障时,协同定位系统仍能利用其他传感器或车辆的数据进行状态估计。
    • 这增强了系统的容错能力和可靠性。
  3. 实时性
    • EKF算法具有较快的计算速度,能够实时处理传感器数据并更新状态估计。
    • 这使得协同定位系统能够应对复杂多变的环境和任务需求。

四、应用领域

无人机/地面车辆协同定位技术具有广泛的应用前景,包括但不限于:

  1. 物流运输:实现无人机与无人车之间的协同运输,提高物流效率和准确性。
  2. 灾害救援:在灾害现场进行协同搜救和物资运输,提高救援效率和安全性。
  3. 军事侦察:协同进行情报侦察和目标跟踪,提高侦察效率和准确性。
  4. 智能交通:实现交通监控、路况分析和车辆调度等任务,提高交通系统的效率和安全性。
  5. 农业监测:协同进行农田监测、作物生长分析和精准施肥等任务,提高农业生产的效率和可持续性。

五、结论

具有扩展卡尔曼滤波器的无人机/地面车辆协同定位技术是一种先进且有效的技术方案。它通过多源数据融合和算法优化,显著提高了定位精度和鲁棒性,并具有广泛的应用前景。随着技术的不断发展和完善,相信该技术将在更多领域发挥重要作用。

📚2 运行结果

函数部分代码:

function linearized_state_and_measurement()
disturb = [-0.25, -0.3, pi/10, 6, -7, pi/10]';
times_steps = 1000;
dt = 0.1;
[x_nom, y_nom] = nominal_traj(times_steps);
[x_full, y_full] = nonlinear_trajectory(disturb, times_steps);
[x_DT, y_DT] = linear_DT_trajectory(disturb, x_nom, times_steps);
x_approx = x_nom + x_DT;
x_approx = wrapx(x_approx);
y_approx = y_nom + y_DT;
y_approx = wrapy(y_approx);
t = 0:0.1:times_steps*dt;
plot_result_part1(t,x_full, y_full, x_approx, y_approx);    
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]郑壮壮,曹万科,邹渊,等.动态环境下无人地面车辆点云地图快速重定位方法[J].兵工学报,2020,41(08):1581-1589.

[2]陈建华. 面向自主地面车辆的立体视觉里程计定位技术研究[D].吉林大学,2019.

🌈4 Matlab代码实现

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值