【风电功率预测】【多变量输入单步预测】基于LSSVM的风电功率预测研究(Matlab代码实现)

   💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、LSSVM简介

二、风电功率预测的特点与难点

三、基于LSSVM的风电功率预测研究步骤

四、基于LSSVM的风电功率预测研究优势与挑战

优势:

挑战:

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于LSSVM(最小二乘支持向量机)的风电功率预测研究,特别是在多变量输入单步预测场景下,是一个结合了现代机器学习和风电特性分析的重要领域。以下是对这一研究方向的详细探讨:

一、LSSVM简介

LSSVM是一种基于支持向量机(SVM)的改进算法,它在传统SVM的基础上,将二次规划问题中的不等式约束改为等式约束,从而简化了求解过程。LSSVM通过求解线性方程组来找到最优的超平面,实现了对数据的回归预测。由于其强大的非线性建模能力和良好的泛化性能,LSSVM在风电功率预测等复杂问题中得到了广泛应用。

二、风电功率预测的特点与难点

风电功率预测具有高度的复杂性和不确定性,主要受到风速、风向、温度、湿度、气压等多种气象因素的影响。此外,风电场的地理位置、地形地貌、风电机组类型等也会对风电功率产生影响。因此,风电功率预测需要综合考虑多种因素,建立准确的预测模型。

三、基于LSSVM的风电功率预测研究步骤

  1. 数据收集与预处理
    • 收集风电场的历史数据,包括风速、风向、温度、湿度、气压以及相应的风电功率数据。
    • 对数据进行清洗和预处理,去除异常值、处理缺失值,并进行数据标准化或归一化处理,以提高模型的训练效率和预测精度。
  2. 特征提取与选择
    • 从预处理后的数据中提取与风电功率预测相关的特征。
    • 通过特征选择方法(如主成分分析、互信息法等)筛选出对预测结果影响较大的特征,以提高模型的预测性能。
  3. 模型构建
    • 选择合适的核函数和正则化参数等超参数,构建LSSVM预测模型。核函数的选择对模型性能有重要影响,常用的核函数包括线性核、多项式核、径向基函数(RBF)核等。
  4. 模型训练
    • 使用训练集数据对LSSVM模型进行训练,通过求解线性方程组来找到最优的超平面。
  5. 模型评估与优化
    • 使用测试集数据对训练好的LSSVM模型进行评估,计算预测误差和性能指标(如均方根误差RMSE、平均绝对误差MAE等)。
    • 根据评估结果对模型进行优化,包括调整超参数、引入新的特征或改进数据预处理方法等。
  6. 预测结果分析与应用
    • 对预测结果进行分析,比较实际值与预测值之间的差异,并探讨可能的原因和改进措施。
    • 将优化后的LSSVM模型应用于实际风电功率预测中,为风电场运行和电网调度提供有力支持。

四、基于LSSVM的风电功率预测研究优势与挑战

优势:
  1. 非线性建模能力强:LSSVM能够处理复杂的非线性关系,适合用于风电功率预测等非线性问题。
  2. 求解过程简化:相比于传统SVM,LSSVM通过求解线性方程组来找到最优超平面,简化了求解过程。
  3. 泛化性能好:LSSVM在训练样本较少的情况下仍然能够保持良好的泛化性能,适用于风电功率预测等小样本问题。
挑战:
  1. 数据质量问题:风电功率预测的数据质量直接影响模型的预测精度。需要采取有效的数据预处理和特征提取方法来提高数据质量。
  2. 模型参数选择:LSSVM模型的性能受到核函数和正则化参数等超参数的影响。如何选择合适的超参数是一个具有挑战性的问题。
  3. 实时预测需求:风电功率预测需要满足实时性要求。如何在保证预测精度的同时提高预测速度是一个需要解决的问题。

五、结论与展望

基于LSSVM的风电功率预测研究已经取得了一定的成果,但仍面临诸多挑战。未来研究可以进一步探索更有效的数据预处理方法、特征提取方法和模型优化算法,以提高风电功率预测的准确性和实时性。同时,随着机器学习技术的不断发展,将LSSVM与其他机器学习算法相结合,构建混合预测模型,也是提高风电功率预测精度的一个重要方向。

📚2 运行结果

部分代码:

% 此函数可以实现多变量多步输入,和多变量单步输入
% 多变量多步输入时,将n_out设置成大于1的多步预测
% 多变量单步输入时,将n_out设置为1,表示预测未来一步。
% # 关于此函数怎么用,下面详细举例介绍:
% # 构造数据,这个函数可以实现单输入单输出,单输入多输出,多输入单输出,和多输入多输出。
% # 举个例子:
% # 假如原始数据为,其中务必使得数据前n-1列都为特征,最后一列为输出
% # [0.74    0.8    0.23 750.75
% # 0.74 0.87 0.15 716.94
% # 0.74 0.87 0.15 712.77
% # 0.74 0.8 0.15 684.86
% # 0.74 0.8 0.15 728.79
% # 0.72 0.87 0.08 742.81
% # 0.71 0.99 0.16 751.3]

% #(多输入多输出为例),假如n_in = 2,n_out=2,scroll_window=1
% # 输入前2行数据的特征,预测未来2个时刻的数据,滑动步长为1。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77 684.86
% # 0.74 0.87 0.15 716.94 0.74 0.87    0.15 712.77  684.86 728.79
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79 742.81】

% # 假如n_in = 2,n_out=1,scroll_window=2
% # 输入前2行数据的特征,预测未来1个时刻的数据,滑动步长为2。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77
% # 0.74 0.87    0.15 712.77  0.74 0.8 0.15 684.86 728.79
% # 0.74 0.8 0.15 728.79 0.72    0.87 0.08 742.81 751.3】


function  res = data_collation(values, n_in, n_out, or_dim, scroll_window, num_samples)
    for i = 1:num_samples
        h1 = values(1+scroll_window*(i-1): scroll_window*(i-1)+n_in,1:or_dim);
        res{i,1}= h1;
        h2 = values(scroll_window*(i-1)+n_in+1 : scroll_window*(i-1)+n_in+n_out,end);
        res{i,2} = h2;
      
    end
 end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.

[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.

[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.

[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

### 使用Matlab进行电功率预测 #### 基于TCN的电功率预测 时间卷积网络(Temporal Convolutional Network, TCN)是一种用于序列建模的有效工具,在电功率预测中有广泛应用。以下是基于TCN的电功率预测的一个简单实现示例[^1]: ```matlab % 加载数据集 data = load('wind_power_data.mat'); % 数据文件应包含历史力发电功率和其他特征 X_train = data.X_train; Y_train = data.Y_train; X_test = data.X_test; % 定义TCN模型结构 model = createTCNModel(inputSize); % 训练模型 options = trainingOptions('adam', ... 'MaxEpochs', 50, ... 'MiniBatchSize', 64, ... 'InitialLearnRate', 0.001); net = trainNetwork(X_train, Y_train, layers, options); % 预测未来时刻的电功率 YPred = predict(net, X_test); function model = createTCNModel(inputSize) layers = [ sequenceInputLayer(inputSize) tcnLayer(8, 32) % 时间卷积层 batchNormalizationLayer() reluLayer() fullyConnectedLayer(1) regressionLayer()]; model = dlnetwork(layers); end ``` 此代码片段展示了如何定义一个简单的TCN架构来处理多变量输入并执行单步预测。 #### 支持向量机结合ARIMA-SVM的混合模型 另一种常见的方法是利用支持向量机和支持向量回归(SVR),并与自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model, ARIMA)相结合,形成一种强大的组合预测技术[^2]: ```matlab % 准备数据... load windPowerData; % 构造ARIMA部分... arimaModel = arima('Constant', 0,'D',1,'Seasonality',12,... 'MALags',[1 12],'SMALags',12); fitArima = estimate(arimaModel,yTrain); % SVM部分... svmStruct = fitrsvm([yTrain'], yTrain'); residuals = residuals(fitArima); % 组合预测... combinedForecast = forecast(fitArima,numStepsAhead)+predict(svmStruct,residuals(end-numStepsAhead+1:end)); ``` 这段脚本先拟合了一个季节性的ARIMA模型,接着训练了一个SVR用来捕捉残差中的模式,最后将两者结合起来做最终预测。 #### BP神经网络应用实例 对于BP神经网络而言,则可以通过如下方式构建和训练模型以完成同样的任务[^3]: ```matlab % 初始化参数... hiddenLayerSize = 10; inputVectorLength = size(trainingInputs,2); outputVectorLength = 1; % 创建并配置NN对象... bpNet = patternnet(hiddenLayerSize); bpNet.trainFcn = 'trainscg'; % 设置训练函数为尺度共轭梯度法 bpNet.performFcn = 'mse'; % 性能指标设为均方误差 bpNet.divideParam.trainRatio = 70/100; bpNet.divideParam.valRatio = 15/100; bpNet.divideParam.testRatio = 15/100; % 开始训练过程... [trainedNet,tr] = train(bpNet,trainingInputs,trainingTargets); % 应用已训练好的网络进行新数据上的预测... predictedOutputs = trainedNet(testingInputs); ``` 上述例子中,`patternnet()`被调用来初始化一个新的前馈感知器类型的神经网络,并设置了隐藏层数目及其他必要的属性。之后进行了标准的训练流程,包括分割数据集、调整权重直到收敛为止。一旦完成了这些步骤就可以使用这个已经过良好训练过的网络来进行新的未知情况下的输出估计了。 #### 考虑二十四节气影响因素的方法 考虑到中国传统的二十四节气可能会影响气候条件从而间接作用于电产量的变化趋势,因此可以尝试采用特定于此文化背景下的策略——即针对不同节气分别建立独立的学习机制,以此提高整体准确性[^4]。 ```matlba for i=1:length(solarTerms) termIndex = find(isSolarTerm(data.Date,i)); % 判断日期属于哪个节气 if ~isempty(termIndex) currentSet = data(termIndex,:); % 对当前节气内的子集合单独建模... [models{i}, performance(i)] = buildPredictor(currentSet); end end function result = isSolarTerm(dates,termNumber) startDates = datetime({'立春','雨水','惊蛰'}); endDates = circshift(startDates,[0,-1]); endDate{length(endDates)} = dates(end); result = false(size(dates)); for k=1:numel(dates) dateInQuestion = dates(k); withinRange = any((dateInQuestion >= startDates & dateInQuestion < endDates)==true); result(k) = and(withinRange,termNumber==find(dateInQuestion>=startDates&dateInQuestion<endDates,1)); end end ``` 这里展示了一种循环遍历所有节气的方式,每次只选取那些落在给定时间段里的观测值作为临时工作区的一部分,进而允许我们更细致地探索各个阶段特有的规律性和特性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值