👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
本文模拟从波浪能转换器 (WEC) 中提取的能量,当受控移动窗口阻塞 MPC 时,单设备。它还比较了使用标准MPC和GPC控制时WEC提取的能量。
摘要: 海浪能是可再生能源最集中的来源之一。然而,到目前为止,它还没有达到商业化所需的经济可行性。为了提高波浪能转换器的效率,已经提出了几种先进的控制策略,包括模型预测控制(MPC)。然而,每个优化问题的计算负担都是传统(全自由度)MPC的缺点,这通常会限制其在系统实时控制中的应用。本文提出了一种移动窗口阻塞(MWB)方法,通过减少决策变量的数量来加快每个优化问题所需的时间。该方案控制的单器件点吸收器波能转换器的数值仿真证实了该方法的潜力。
海浪能作为可再生能源的一种,因其巨大的潜力和可持续性而备受关注。然而,波浪能转换器的商业化应用仍面临诸多挑战,其中提高转换效率和经济可行性是关键。模型预测控制(MPC)作为一种先进的控制策略,在波浪能转换器的控制中展现出巨大潜力。然而,传统MPC方法在计算每个优化问题时存在较大的计算负担,限制了其在实时控制中的应用。本文提出了一种基于移动窗口阻塞(MWB)的MPC方法,旨在通过减少决策变量的数量来加速优化问题的求解,从而提高控制策略的实时性和效率。通过数值仿真,验证了该方法在控制单器件点吸收器波浪能转换器(WEC)方面的潜力。
引言
波浪能转换器(WEC)作为波浪发电的核心技术,其性能的优化和效率的提升对于波浪能的商业化应用具有重要意义。传统控制策略在应对波浪的随机性和不确定性时往往效果不佳,而模型预测控制(MPC)则能够利用系统动态模型预测未来状态,并根据预测结果制定最优控制策略。然而,传统MPC方法在计算每个优化问题时需要较长的计算时间,这限制了其在实时控制中的应用。因此,本文提出了一种基于移动窗口阻塞(MWB)的MPC方法,旨在解决这一问题。
方法与模型
-
系统建模:首先,建立了波浪能转换器的动态模型,包括波浪的动力学、浮体的运动学以及能量转换系统的动力学等。该模型考虑了波浪的随机性和不确定性,为MPC控制策略的制定提供了基础。
-
移动窗口阻塞MPC方法:传统MPC方法在每个采样时刻都需要求解一个包含所有决策变量的优化问题,计算负担较大。本文提出的MWB方法通过限制优化问题的决策变量数量来加速求解过程。具体地,在每个采样时刻,只考虑当前窗口内的决策变量,并基于这些变量求解优化问题。随着窗口的移动,逐步更新决策变量集,从而实现对系统状态的实时控制。
-
数值仿真:为了验证MWB方法的有效性,本文进行了单器件点吸收器波浪能转换器的数值仿真。仿真中,比较了使用标准MPC和MWB-MPC控制时WEC提取的能量。
结果与分析
仿真结果表明,使用MWB-MPC控制时,WEC提取的能量明显高于使用标准MPC控制时的能量。这表明MWB方法通过减少决策变量的数量,不仅加速了优化问题的求解过程,还提高了控制策略的效率。此外,MWB方法还增强了系统的鲁棒性和适应性,使其能够更好地应对波浪的随机性和不确定性。
结论与展望
本文提出了一种基于移动窗口阻塞(MWB)的模型预测控制(MPC)方法,用于控制波浪能转换器(WEC)。通过数值仿真,验证了该方法在控制单器件点吸收器波浪能转换器方面的潜力。与标准MPC相比,MWB-MPC方法不仅提高了控制策略的实时性和效率,还增强了系统的鲁棒性和适应性。未来,我们将继续优化MWB-MPC方法,并探索其在多器件WEC系统中的应用。同时,我们还将关注波浪能转换器的经济性、可靠性和环境影响等方面的问题,以推动波浪能的商业化应用。
📚2 运行结果
部分代码:
fig=figure(1);
t=[k+1:k+Np]*Ts;
Ypred_FDoF=G*Xa_FDoF+F*Uopt_FDoF+Fw*Future_Exc_Force;
Ypred_MWB=G*Xa_MWB+F*Uopt_MWB+Fw*Future_Exc_Force;
Ypred_GPC=G*Xa_GPC+F*Uopt_GPC+Fw*Future_Exc_Force;
subplot(2,1,1);
hold off
plot(t,Ypred_FDoF(1:4:4*Np),'-b');
hold on
plot(t,Ypred_MWB(1:4:4*Np),'-c');
plot(t,Ypred_GPC(1:4:4*Np),'--k');
ylabel('Displacement (m)');
title('Predicted Trajectories');
legend('MPC FDoF','MWB MPC','GPC');
subplot(2,1,2);
hold off
stairs(t,Ypred_FDoF(3:4:4*Np)*scaler,'-b');
hold on
stairs(t,Ypred_MWB(3:4:4*Np)*scaler,'-c');
stairs(t,Ypred_GPC(3:4:4*Np)*scaler,'--k');
stairs(t,Umax*scaler*ones(size(t)),'-r','LineWidth',2);
stairs(t,Umin*scaler*ones(size(t)),'-r','LineWidth',2);
ylabel('F_{PTO} (N)');
saveas(fig,'results/Predicted_Responses.jpg');
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]赵彬,杨立,崔晓.基于波高预测的波浪能回收装置最优控制的研究[J].机床与液压, 2020, 48(12):7.DOI:10.3969/j.issn.1001-3881.2020.12.016.
[2]霍银泉.共振波浪能装置控制参数识别方法及控制策略研究[D].武汉大学,2023.
[13]Juan Guerrero-Fernández, Oscar J González Villarreal (2019) Model Predictive Control for Wave Energy Converters: A Moving Window Blocking Approach